As the adage says, you can't compare apples and oranges. Recording the right baseline and monitor data is vital in production monitoring. Safeguarding repeatability is equally important during seismic processing.
What we track is the 4D difference, obtained by subtracting the baseline data from the monitor data. Even if we have perfectly repeated acquisition parameters, there may still be ‘4D noise’ or ‘non-repeatability’ in the result. Seismic processing workflows can mitigate dynamic causes of the non-repeatable signal. Where variances are unavoidable, they should be unambiguous. Accuracy is not enough, answers must be delivered on time for maximum value, and a robust 4D toolkit must be able to deal with different types of data.
As there is often a looming intervention deadline, and the meaningfulness of the 4D information decays as production continues, 4D seismic processing products are often time-critical. Accelerated ‘fast-track’ 4D products, using abbreviated workflows are often delivered within weeks of the last shot, followed later by ‘full integrity’ 4D deliverables.
Quality control (QC) is essential as a 4D project progresses, highlighting the factors causing non-repeatability of either acquisition or processing, and used to guide future processing steps.
The direct 4D difference is a useful but subjective QC. A number of quantitative QC attributes are used to categorize the energy seen in the 4D difference. The most common approach is based upon root-mean-square (RMS) amplitudes measured within time windows from the seismic data. The NRMS (normalized RMS) value measured in 4D processing is the RMS amplitude of the difference, normalized by the average of the RMS amplitudes.
Predictability measures, such as signal to distortion (SDR) ratios and signal to noise analysis, are also useful gauges of repeatability. Attributes such as amplitude, phase and time shifts between the baseline and monitor data are also checked using a series of horizons above and at the target reservoir levels. These are repeated at every key stage of the 4D workflow. The statistical distribution of these quantities should converge through the 4D sequence, centering on zero amplitude phase and time shift differences; for all horizons except those affected by reservoir production.