GeoStreamer is regularly claimed to be the optimum prestack platform for seismic inversion and quantitative seismic interpretation studies, but what does this mean?
Competitor case studies often show apparently good correlation between migrated stacks of conventional hydrophone-only streamer data and well synthetics, but it is shown below that these well synthetics use wavelets that are affected by the same spurious ghost effects as the seismic data—contaminated well synthetics matched to contaminated seismic data. The real correlation of interest is that between ‘broadband’ data, in this case GeoStreamer, and well synthetics generated using broadband wavelets. This article attempts to shed light on a few key components of the optimal workflow.
The success of any prestack seismic inversion project depends upon a series of steps being executed accurately in a sequential and thus inter-dependent manner. The discussion here assumes that all well log and check shot editing and calibration, petrophysical analysis, and seismic pre-stack data conditioning has been done optimally. This includes velocity model estimation so that the key remaining sources of uncertainty include wavelet estimation, the frequency and signal-to-noise characteristics of the seismic data, and the parameterization of the inversion workflow. Consideration is given below to minimizing error and uncertainty in each of these steps.
Working in the impedance domain is an optimal platform to exploit the value of high-quality broadband seismic data—both for improved well ties and for quantitative prediction of lithology and fluid properties. As a general observation, conversion from reflectivity (amplitude) to impedance is convenient for several reasons, including better correspondence to stratigraphic layering, removal of the wavelet effect, reduced tuning effects, general relationships to petrophysical properties and so on.
Historically, the lack of low-frequency reflectivity signal in marine seismic data restricted the impedance data derived from relative inversion or colored 'inversion' (not actually an inversion) to simple reconnaissance interpretation and prospect screening, aided by the closer resemblance of impedance images to the geology than the equivalent reflectivity images; the contrast between impedance being a layer property and reflectivity being controlled by impedance contrasts at layer boundaries. When the low-frequency phase and amplitude versus angle content of broadband data has been correctly preserved, the inversion of such data enable quantitative interpretation in a manner approaching the use of absolute seismic inversion results—particularly when robust low-frequency model building can be facilitated by Full Waveform Inversion (FWI) in the manner of Feuilleaubois et al. (First Break, March 2017).
Particular attention is now given to the mechanics of wavelet estimation, AVA gradient conditioning and attenuation compensation for elastic characterization of lithology and fluids, and the considerations for zero offset seismic-to-well ties. Overall, the use of broadband well log data is demonstrated both in terms of zero offset and multi-angle applications.