Towing marine seismic sources wider is more efficient, improves near-offset coverage and gives more accurate subsurface information. In the last two years, TGS has towed six wide-tow multi-source GeoStreamer surveys.
Towards the end of 2020, TGS completed its sixth towed-streamer marine seismic acquisition project with a novel wide-tow multi-source configuration. These six wide-tow source solutions were applied in two advanced GeoStreamer X multi-azimuth (MAZ) programs in the North Sea, offshore Norway, in exploration surveys offshore Australia and the UK, and most recently during two high-resolution surveys in the Barents Sea.
These wide-tow source acquisition programs achieved several industry records, new geophysical benchmarks were set, and the near-offset-rich data built the basis for new processing approaches. Current experiences with wide-tow sources in towed streamer marine seismic acquisition and the corresponding uplifts in seismic data quality and acquisition efficiency are highlighted here.
Traditionally, marine seismic sources have been towed in front of the two innermost streamers of a streamer spread. The standard source separation for a typical towed-streamer seismic survey is defined by dividing the streamer separation by the number of source arrays.
However, a wider separation between the source arrays can improve the near-offset coverage without sacrificing survey efficiency. This is especially relevant for shallow water areas with relatively shallow targets, where good near-offset or near-angle coverage is required for robust AVO analysis or for effective multiple removal.
Wider tow of sources also extends the common midpoint (CMP) coverage per sail line, i.e., the so-called ‘CMP-brush’ becomes wider. The number of CMP lines or sublines acquired per sail line is equal to the product of the number of source arrays and the number of streamers. The separations of the source arrays and the streamers do not have a direct impact on the number of CMP lines acquired, but do control the CMP line spacing. Thus, the wider ‘CMP brush’ that results from a wider source separation is the result of partially sparser spatial sampling in a crossline direction, and not the outcome of acquiring additional data.
When combining standard streamer spreads with wide-tow sources, regular sampling can be achieved by means of overlapping the CMP brushes. Ultimately, the combination of wide-tow multi-source configurations with high streamer counts enables higher acquisition efficiency without trading off near offset coverage or sacrificing regular crossline sampling (see figure below).
Read more about wide-tow sources and novel marine acquisition geometries in these articles: