The transition from continental extension to seafloor spreading marks the separation of continents and the development of conjugate passive margin systems. It causes major restorations of the regional tectonic conditions, has wide implications for the basin evolution, and affects the formation of petroleum systems. In restricted environments, the continental break-up commonly occurs somewhere close to the period of salt deposition, such as in the South Atlantic basin or the Gulf of Mexico. Unsurprisingly it is widely debated whether salt deposits postdate or predate the continental break-up. Depending on the timing, salt basins might have formed either separately on each conjugate margin including scenarios with salt deposited on newly formed oceanic crust, or as a large salt basin that has been subsequently split during break up.
Analysis on extensional faults near the base of salt allows narrowing down the critical time interval of continental separation and provides insights into the condition during reservoir formation of the presalt plays. Key prerequisites for such investigations are high resolution regional-scale seismic products offering reliable and accurate imaging of the base of the salt and the reservoir bearing sequences below, including their fault controlled morphology.
TGS’ Santos Vision encompasses more than 49 000 sq. km of broadband 3D seismic data in the Santos Basin offshore Brazil, and includes more than 60% coverage of the presalt São Paulo Plateau. This rift-related basement high contains the regional fairway for the prolific hydrocarbon play associated with presalt carbonate build-ups. Based on the salt and postsalt architecture (see the figure below), the plateau region is divided into three tectono-stratigraphic domains. The northwestern Albian Gap domain, is an approximately 40 km wide zone of roll-over structures that displaced most of the Aptian layered evaporite sequence (LES) and largely lacks the postsalt Albian carbonates. A system of extensional faults (Cabo Frio Fault) delineates the Albian Gap from the adjacent mini basin domain of thick layered evaporite sequences bounding mini basins filled with postsalt sediments. Highly reflective layers of anhydrite and other evaporites within the LES indicate complex internal folding while rather transparent sections refer to accumulations of intra-formational mobilized halite. The dominance of mini basins diminishes towards the adjacent fold belt domain, which reveals increasingly well imaged folding and diminishing complexity towards the distal section of the São Paulo Plateau.