Seeing under salt is not the only way more azimuths may benefit seismic imaging. The extra information also facilitates more accurate modeling of complex structures. Their acquisition is complicated and demanding but it's worth it when the result reduces the risk of expensive drilling decisions.
A progression in survey effort from one vessel towing sources and streamers sailing a survey area in two or more directions to several vessels sailing a survey area in two or more directions, some of them possibly only towing sources, represents the operational contrasts between multi-azimuth (MAZ), wide-azimuth (WAZ), and full-azimuth (FAZ) 3D seismic. Historically, the primary motivations were improved seismic illumination of the reservoir below 'penetration barriers' in the overburden and the attenuation of complex coherent noise types that are difficult to remove using conventional signal processing methods. Significant improvements in seismic image quality and associated exploration drilling success have been reported in a wide variety of global settings; typically involving chalk, carbonates or volcanics in the overburden, or regionally extensive and rugose salt cover above the exploration targets. The availability of diverse azimuth information is also essential when building velocity models that incorporate orthorhombic anisotropy. Seismic imaging solutions able to exploit such information often yield significantly different structural representations of the earth, and are critical for de-risking expensive drilling decisions.
Conventional 3D surveys are acquired using ‘swath’ or ‘race-track’ vessel shooting, wherein the survey has a single line orientation (or ‘survey azimuth’), and a long, narrow spread of streamers are towed by a single vessel. Apart from the front of the streamers (short source-receiver distance, or ‘offsets’), most source-receiver combinations share a relatively limited range of azimuths (the angles between their particular vector and the survey orientation; see figure below). Thus, the subsurface geology is seismically illuminated only from one particular shooting direction. We assume that most coherent noise types are well behaved and we can remove them in processing. We assume that the target illumination is acceptably uniform, and we can produce clean seismic images. Most of the time these assumptions are in the ballpark of truth and our resultant seismic data allow us to achieve our exploration and appraisal objectives.