With separated wavefield imaging, it is possible to enjoy the efficiency of wide-tow in any water depth.
Wide-tow seismic acquisition maps areas faster but unfortunately it has severe drawbacks in shallow areas. Adding sea-surface reflections increases coverage and data density to deliver more accurate images of the subsurface.
The surface of the ocean acts like a huge mirror reflecting the sound we use to create seismic images of geological structures. This unwanted noise can dominate raw seismic recordings and traditionally it has to be removed to reveal the true image of the earth.
SWIM® is an acronym for separated wavefield imaging. It is an algorithm that makes it possible to harness sound waves that reflect off the sea surface. By employing the sensors that record these sea-surface reflections as virtual sources, we access a myriad of additional signals with tremendous angular diversity. These can be used to fill in gaps in survey coverage, and to create strikingly detailed and accurate high-resolution images of the near-surface. They can also assist in producing more reliable velocity models. The key is separating the wavefield, which is a routine process with multi-sensor GeoStreamer® seismic data.
The benefits go beyond significantly increased survey efficiency and gaining a better understanding of the topmost layers. With a better understanding of the overburden, imaging of deeper layers also becomes more accurate. Additionally, we can use these more precise images beneath the seabed to improve the prediction and removal of multiples far deeper in the data volume. In reducing shallow model uncertainty SWIM improves the imaging of deep targets.