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Introduction 

The field of geophysical exploration, particularly in seismic data acquisition and processing, is undergoing a 
profound transformation through the integration of machine learning (ML) technologies. While seismic data 
processing has traditionally relied on computationally intensive and manually tuned methods, machine 
learning offers the promise of accelerated workflows, improved resolution, and consistency across datasets. 
This work focuses on the application of ML techniques specifically to 3D ultra-high-resolution seismic (UHRS) 
data, highlighting the potential of artificial intelligence to both enhance quality and significantly reduce 
processing time. 

Although UHRS datasets are generally smaller in size than conventional seismic datasets, the increasing scale 
of modern surveys, such as those exceeding 500 square kilometers as cited by Caselitz et al. (2024), has made 
computational efficiency and turnaround time critical considerations. Even for smaller surveys, the typical 
bottleneck lies in the testing and parameterization phase of processing, which can be dramatically streamlined 
through ML approaches. 

Machine learning’s core advantages in seismic data processing include eliminating complex parameterization 
steps, reducing turnaround time, and delivering consistent results across surveys. Currently, ML applications 
for UHRS data are primarily focused on denoising and deghosting. However, the potential extends further into 
velocity model building and even the restructuring of processing workflows into integrated, end-to-end models. 

This work investigates several supervised machine learning techniques, including RIDNet deep neural 
networks, Fourier Neural Operators (FNO), and U-Net Convolutional Neural Networks (CNNs), and applies 
them to various stages of the UHRS processing sequence. These methods are explored through real-case 
applications, including receiver deghosting, velocity model building, and integrated pre-stack correction 
workflows. The broader objective is to demonstrate how ML can fundamentally change UHRS processing by 
merging formerly discrete steps into cohesive, real-time solutions that are more efficient and equally robust. 

Machine Learning Techniques for UHRS Processing 

In recent years, machine learning (ML) has become a transformative tool in seismic data processing, enabling 
more efficient interpretation and analysis of complex subsurface structures. Among the various ML 
approaches, supervised learning techniques have demonstrated superior performance over unsupervised 
methods in seismic processing tasks such as denoising, fault detection, and lithofacies classification. The 
primary advantage of supervised learning lies in its use of labeled data, which allows models to learn direct 



mappings between seismic attributes and desired outputs, significantly enhancing accuracy and 
generalization. In contrast, unsupervised techniques, which rely solely on data patterns without labeled 
outcomes, often struggle to capture the nuanced geophysical relationships inherent in seismic datasets. 
Supervised models, such as convolutional neural networks (CNNs), have shown remarkable success in 
reducing noise while preserving geological features, owing to their ability to be trained on synthetic or real 
seismic datasets. Additionally, supervised learning provides greater control over model behavior, 
interpretability, and quality assurance. While unsupervised methods remain useful for exploratory analysis and 
feature extraction, the precision and reliability of supervised approaches make them more suitable for 
applications in seismic processing. 

Supervised learning techniques were employed throughout this study. These approaches rely heavily on 
access to high-quality training datasets, which are ideally derived from geophysical processing outputs of 
previously processed data and/or synthetic data. The ML model development workflow begins with supervised 
learning, where inputs and corresponding ground-truth outputs are used to generate a prediction model that 
can be applied to new datasets. 

Three primary models were explored: 

1. RIDNet Deep Neural Network (DNN): 

RiDNet is a sophisticated deep convolutional neural network architecture originally developed for the task 
of real-world image denoising. It addresses the challenge posed by real noisy images, which often contain 
complex, non-Gaussian noise arising from sensor imperfections, compression artifacts, and various 
environmental factors. Unlike synthetic noise, which is typically Gaussian and easier to model, real noise 
exhibits diverse characteristics that complicate traditional denoising approaches.  

The core innovation of RiDNet lies in its use of Residual-in-Residual Dense Blocks (RRDBs), which form the 
building blocks of the network. Each RRDB contains multiple convolutional layers arranged in a densely 
connected fashion, meaning each layer receives inputs from all preceding layers within the block. This 
dense connectivity promotes extensive feature reuse and helps the model learn a rich representation of 
the input image. Additionally, the RRDB incorporates residual connections at two levels: inside the dense 
block and wrapping the entire block itself. These nested residual connections facilitate better gradient flow 
during training, helping to mitigate the vanishing gradient problem common in deep networks. They also 
enable the model to capture both low-level details, such as edges and textures, and high-level abstract 
features necessary for accurate denoising. 

A unique aspect of RiDNet is the integration of attention mechanisms that enhance its ability to focus on 
informative features while suppressing noise. Specifically, the model employs channel attention and 
spatial attention modules. The channel attention mechanism operates by weighting different feature 
channels according to their relevance, enabling the network to emphasize important characteristics while 
ignoring less useful information. Spatial attention, on the other hand, applies a learned mask over spatial 
locations within the feature maps, highlighting regions of the image that require more focus during 
denoising. These attention modules are applied after the RRDBs, refining the feature maps to better 
preserve meaningful image content while attenuating noise patterns. 

The overall architecture of RiDNet follows an encoder-decoder-like design but does not employ 
downsampling, thereby maintaining the original spatial resolution of the input throughout the network. The 
input image first passes through an initial convolutional layer that extracts low-level features. This is 
followed by a series of RRDBs that progressively enhance the feature representations. Afterward, the 



attention modules refine these features before a final convolutional layer reconstructs the denoised 
output. A global residual connection adds the input image back to the network's output, a technique known 
as residual learning. This approach allows the network to focus on learning the noise component directly, 
which has been shown to improve both training stability and denoising quality. 

While RiDNet was designed for natural image denoising, its architectural principles make it highly 
adaptable to geophysical data processing, especially seismic data denoising. Seismic data often suffer 
from complex noise such as random noise, coherent ground roll, and acquisition artifacts, which can 
obscure important subsurface features. By leveraging the residual-in-residual structure, dense 
connectivity, and attention modules, RiDNet can be adapted to learn both local waveform characteristics 
and global structural patterns found in seismic volumes. The residual learning strategy is also 
advantageous for seismic processing, as the goal is typically to separate noise from the true signal. 

In summary, RiDNet is a powerful and elegant neural network architecture that combines residual learning, 
dense connectivity, and attention mechanisms to excel at removing real-world noise from images. Its 
principles translate well beyond natural images, offering promising avenues for improving the quality of 
seismic and other geophysical data through deep learning-based denoising. 

This model, previously presented by Farmani et al. (2023), excels in denoising and deghosting applications. 
It is currently in production use across multiple UHRS projects. RIDNet models are trained individually for 
each survey to handle specific acquisition configurations and noise characteristics. 

2. Fourier Neural Operator (FNO): 

The Fourier Neural Operator (FNO) is a deep learning architecture designed to learn mappings between 
infinite-dimensional function spaces, making it particularly well-suited for solving partial differential 
equations (PDEs). Unlike traditional neural networks that operate in the spatial domain, FNOs leverage 
the Fourier transform to operate in the frequency domain. This allows them to capture global patterns and 
long-range dependencies more efficiently, which is especially valuable in modeling complex physical 
systems. 

In the context of seismic applications, FNOs offer a powerful framework for modeling wave propagation, 
seismic inversion, and other forward and inverse problems governed by PDEs. Seismic wavefields are 
inherently governed by the wave equation, a PDE that describes how seismic energy propagates through 
the Earth. Traditional numerical solvers for these equations, such as finite-difference or finite-element 
methods, can be computationally expensive and time-consuming, especially when applied to large-scale 
3D models. 

FNOs address this challenge by learning a surrogate model that approximates the solution operator of the 
wave equation. Once trained, an FNO can predict the evolution of seismic wavefields across time and 
space with significantly reduced computational cost. This makes it highly attractive for tasks like real-time 
seismic simulation, full waveform inversion (FWI), and data-driven velocity model building. 

Moreover, because FNOs operate in the frequency domain, they are naturally aligned with the spectral 
characteristics of seismic data, which are often analyzed using Fourier-based methods. This spectral 
perspective allows FNOs to generalize well across different geological settings and input conditions, 
making them robust tools for seismic interpretation and modeling. 



In summary, the Fourier Neural Operator provides a scalable, efficient, and physically informed approach 
to seismic data processing and modeling, bridging the gap between data-driven learning and physics-
based simulation. Its ability to learn complex mappings in high-dimensional spaces with fewer training 
samples and faster inference times positions it as a transformative tool in modern geophysics. 

Introduced by Crawley et al. (2023), FNO is a physics-informed machine learning model that has 
demonstrated effectiveness in velocity model generation. This study represents the first application of 
FNO to UHRS data. Although initially trained on conventional seismic datasets, FNO shows promise for 
UHRS applications, particularly in its ability to replicate the resolution and geological coherence of high-
frequency full waveform inversion (FWI) outputs at a fraction of the computational cost. 

3. Additionally, U-Net CNNs were used for post-migration noise attenuation and reflection-diffraction 
separation. These secondary applications support hazard identification (e.g., detection of boulders or 
shallow objects) and enhance the interpretability of processed seismic images. The Convolutional Neural 
Network U-Net (CNN U-Net) is a specialized deep learning architecture originally developed for biomedical 
image segmentation, but it has since been widely adopted in geophysics, particularly for seismic data 
interpretation. Its strength lies in its encoder-decoder structure with skip connections, which enables it to 
capture both global context and fine-grained spatial details, an essential capability for processing complex 
seismic images. 
 
The encoder part of the U-Net progressively reduces the spatial dimensions of the input seismic section 
while increasing the depth of feature maps, allowing the network to learn abstract, high-level 
representations of geological structures. The decoder then upsamples these features back to the original 
resolution, reconstructing detailed spatial information. Crucially, the skip connections between 
corresponding layers in the encoder and decoder preserve fine-scale features that might otherwise be lost 
during downsampling, ensuring that subtle geological boundaries are accurately captured. 
 
One of the key advantages of CNN U-Net in seismic processing is its ability to learn directly from labeled 
seismic images, making it a powerful supervised learning tool. Once trained, the model can generalize to 
unseen data, enabling rapid and automated interpretation across large seismic volumes. This significantly 
reduces the manual effort required by geophysicists and enhances consistency in interpretation. 
 
In summary, CNN U-Net provides a robust and efficient framework for seismic image segmentation and 
interpretation. Its ability to combine deep feature extraction with precise localization makes it an 
indispensable tool in modern seismic workflows. 

Application Examples 

1. Receiver Deghosting 

Deghosting of UHRS data is complex due to the variability in receiver and source depths. Traditional 
geophysical deghosting methods, like those described by Bekara et al. (2024), rely on inversion-based 
techniques that are accurate but computationally expensive. 

In this study, RIDNet was trained using input-output pairs generated by conventional inversion-based 
deghosting of a single acquisition sequence. Once trained, the RIDNet model was applied to other sequences 
in the dataset with remarkable speed and fidelity. A comparison of results on a QC line (excluded from training 



data) shows that the machine learning method produced results visually and structurally equivalent to 
geophysical deghosting, with dramatically reduced processing times (Figure 1). 

This not only validates RIDNet’s ability to generalize but also underscores ML’s value in accelerating early-
phase processing without sacrificing output quality. 

 

Figure 1: 2d stack comparison QC. Input to receiver deghosting (left), inversion deghosting (center), ML deghosting (right). Both 
methods produce a high-quality output. 

2. Velocity Model Building with FNO 

Velocity model building is central to seismic imaging. Traditional techniques such as tomographic inversion 
and full waveform inversion (FWI) are computationally demanding and require extensive manual QC. This 
challenge is particularly acute in the shallow subsurface, where UHRS data aims to resolve fine-scale 
sedimentary features. 

The FNO model, trained entirely on synthetic data from conventional surveys (with 15 Hz RTM angle gathers), 
was applied to UHRS datasets. Despite not being trained on UHRS-specific geometries or frequency content, 
the resulting ML-based velocity model demonstrated excellent geological conformity. When overlaid on 
migrated stacks, the FNO-derived velocity model highlighted shallow channels filled with low-velocity 
sediments more clearly than the initial model (Figure 2). 

This indicates that FNO models can deliver near-FWI resolution at a fraction of the computational cost, 
providing a viable alternative for high-resolution velocity modeling in production environments. 

3. Integrated Post-Stack ML Workflow 

One of the most innovative contributions of this study is the integration of multiple pre-stack corrections into 
a single ML model. Traditionally, UHRS processing includes discrete steps for statics correction, NMO 
correction, deghosting, denoising, and multiple suppression, often requiring iterative loops and intermediate 
QC. 



Using RIDNet, a neural network was trained to perform all of these steps in one pass. A proof-of-concept 
application compared a conventional pre-stack processed stack against a raw stack that was processed post-
stack using the ML model (Figure 3). The ML-based stack exhibited better signal-to-noise characteristics than 
the unprocessed raw stack and retained many of the qualities of the fully processed version. 

Though some residual multiple energy remained, the integrated ML approach points toward a new paradigm in 
UHRS data processing, one that favors speed and integration over modular, sequential workflows. This 
capability could support the creation of ultra-fast-track seismic products within hours rather than days. 

Benefits and Challenges of ML in UHRS 

Machine learning is rapidly transforming seismic data processing by introducing new levels of speed, precision, 
and automation. One of the most significant advantages of ML is its ability to drastically reduce processing 
times, particularly in stages that are traditionally labor-intensive and quality-control-heavy, such as deghosting 
and velocity model building. By automating these steps, ML not only accelerates workflows but also frees up 
geophysicists to focus on higher-level analysis and decision-making. 

 

Figure 2: Migrated stack with overlaid velocity model (m/s) – Initial model and stack (left), ML model and stack (right). The 
ML algorithm is able to capture low velocity related to shallow channels just beneath the seabed. 

Another key benefit is the resolution that ML models can achieve. Advanced architectures like the Fourier 
Neural Operator (FNO) have demonstrated the ability to produce results that approach the quality of full 
waveform inversion (FWI), especially in resolving shallow subsurface features. This level of detail is critical for 
accurate imaging and interpretation in complex geological settings. 

ML also enhances consistency across datasets. Unlike geophysical parameter testing, which can vary between 
individuals or teams, ML models provide repeatable outputs that are less susceptible to human bias.  

Furthermore, ML enables the simplification of seismic workflows. Traditional processing sequences often 
consist of discrete, sequential steps, each requiring separate tools and expertise. ML models can integrate 
multiple steps into a unified process, streamlining operations and reducing the potential for error. 



Once trained, ML models are also highly efficient in terms of resource usage. They can be deployed across 
multiple datasets with minimal computational overhead, making them cost-effective for repeated application 
in similar geological settings. 

However, the adoption of ML in seismic processing is not without its challenges. A primary limitation is the 
dependence on high-quality training data. ML models require labeled datasets derived from previous 
geophysical outputs, which are often proprietary. In ultra-high-resolution seismic surveys, for example, data 
cannot typically be reused across projects, necessitating retraining for each new survey. 

Generalizability is another concern. While models like FNO show promise in adapting across domains, ML 
models tend to perform best when tailored to the specific acquisition geometry and geological context of a 
given survey. This limits their out-of-the-box applicability and requires careful tuning for each use case. 

Interpretability also remains a challenge. Deep learning models, including those used in seismic processing, 
often function as "black boxes," making it difficult to understand the rationale behind their predictions. This 
opacity necessitates additional quality control measures to ensure reliability and trustworthiness. 

In summary, while machine learning offers transformative benefits for seismic processing, ranging from speed 
and resolution to workflow integration, it also introduces new challenges related to data availability, model 
generalization, and interpretability. Addressing these challenges is essential for fully realizing the potential of 
ML in geophysical applications. 

 

Figure 3: Unmigrated stack comparison QC. Raw stack (left), pre-stack processed stack (center), post-stack ML (right). The 
ML solution provides a better signal-to-noise ratio but leaves more multiples energy. 

Conclusion 

Machine learning stands as a transformative technology in the processing of 3D ultra-high-resolution seismic 
data. From denoising and deghosting to velocity model building and multi-step integration, ML not only 
accelerates traditional workflows but also redefines what is possible in terms of resolution, efficiency, and 
scalability. 



While certain barriers, especially data privacy and model generalizability, remain, the demonstrated potential 
of supervised learning techniques such as RIDNet and FNO suggests that ML will increasingly become central 
to the seismic processing toolkit. The key lies in building high-quality training datasets, adapting models to 
specific geological and acquisition conditions, and rethinking workflows to fully exploit the integrative 
capabilities of artificial intelligence. 

As the energy sector continues its digital transformation, the insights gained from studies like this will pave the 
way for smarter, faster, and more accurate subsurface imaging providing vital data for safer operations, better 
exploration, and ultimately more efficient resource development. 
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