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and the curvelet transform domain (Yang et al. 2020; Kumar et 
al. 2021; Ren et al. 2022; Kumar et al. 2024). Recently, machine 
learning (ML) has been applied to accelerate non-compressional 
energy attenuation in vertical geophone recordings (Sun et al. 
2023; Seher et al. 2024). However, a successful application of 
ML-based noise attenuation requires high-quality training data.
New rotational sensors on the seafloor (Pedersen et al. 2023;
Kritski et al. 2024; Masoomzadeh et al. 2024) are expected to
provide appropriate training data for this purpose.

In this paper, we first review four solutions for the attenuation 
of non-compressional energy in OBN recordings, then demon-
strate that rotational records from a prototype receiver can be 
used to improve the denoising process, and finally show how ML 
can be utilised to reduce the computational cost and the human 
effort involved in the noise attenuation workflow.

Conventional methods for the attenuation of 
non-compressional energy
A major problem with separating hydrophone and geophone 
recordings into upgoing and downgoing wavefields is the pres-
ence of strong non-compressional energy in the vertical geophone 
records. Different methods have been developed to attenuate this 
unwanted energy in OBN recordings. These methods commonly 
exploit two different properties of multi-component data. The 
first property is that non-compressional energy is not detected 
by the hydrophone. This property allows the attenuation of 
non-compressional energy in the vertical geophone data by using 
the hydrophone data as a guide in a cooperative denoising pro-
cess. The second property is that horizontal geophones are more 
sensitive to non-compressional motions. Using the horizontal 
recordings as noise models allows for the attenuation of this noise 
by simultaneous adaptive subtraction. Here, we will be compar-
ing four methods for the attenuation of non-compressional energy 
based on the 2D dual-tree complex wavelet transform, both 
2D and 3D curvelet transforms, and the simultaneous adaptive 
subtraction of data recorded by horizontal geophones.

We start by showing results for one of these methods based on 
the 3D curvelet transform (Figure 1). The curvelet domain is attrac-
tive for noise attenuation because it allows a detailed frequency and 

Attenuation of non-compressional energy in ocean 
bottom node data
Tim Seher1*, Hassan Masoomzadeh1, Yong Ren1, Fons ten Kroode1, Mark Roberts1, 
Alexander Kritski2, Harald Westerdahl2, Mark Thompson2 and Åsmund Sjøen Pedersen2 use 
rotational measurements from a new type of ocean bottom node for the attenuation of  
non-compressional energy.

Abstract
Attenuation of non-compressional energy, such as shear body 
waves and scattered surface waves, is a critical step in the 
processing of ocean bottom node seismic data, because this 
unwanted energy interferes with the desired compressional 
signals. In this paper, we first review conventional methods 
for attenuating non-compressional energy in vertical geophone 
recordings, including cooperative denoising procedures and 
adaptive subtraction techniques. We then introduce the use of 
rotational measurements from a new type of ocean bottom node 
for the attenuation of non-compressional energy. Our results 
demonstrate that rotational data improve the attenuation of the 
non-compressional energy, particularly for flat events at small 
offsets where conventional methods struggle. Finally, we explore 
the potential of machine learning to reduce the computational cost 
and human effort involved in the denoising workflow. Overall, 
the combination of conventional denoise techniques and rota-
tional data delivers robust results. The introduction of machine 
learning provides a way forward that leverages the strengths of 
existing methods and reduces the cost of seismic data processing.

Introduction
The attenuation of undesired signals is a continuing issue in the 
processing of ocean bottom node (OBN) seismic data. An example 
is the presence of non-compressional energy on vertical geophone 
records (Paffenholz et al. 2006a, 2006b), which limits our ability 
to jointly process hydrophone and geophone data. This energy is 
linked to the presence of both shear body waves and scattered sur-
face waves. It has been called interchangeably shear-wave noise, 
Vz noise (referring to noise on the vertical geophone), or more 
recently, non-compressional energy, a term that we will adopt here.

Over the years, a variety of processing techniques have been 
developed to attenuate non-compressional energy in vertical 
geophone recordings. The most common approach for attenuating 
non-compressional energy involves a cooperative denoising 
procedure between the vertical geophone and the hydrophone in 
different transform domains such as the Tau-p transform domain 
(Craft and Paffenholz 2007; Poole et al. 2012), the wavelet trans-
form domain (Yu et al. 2011; Peng et al. 2013; Ren et al. 2020), 
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preserves event continuity and leaves fewer artifacts and less noise. 
Finally, we compare the 3D curvelet method with simultaneous 
adaptive subtraction. In this approach, we adaptively subtract the 
two horizontal geophones from the vertical geophone while using 
the hydrophone data to protect the desired signal. This comparison 
shows that both approaches yield noise models with coherent shear 
events (Figures 2c&d). However, the 3D curvelet noise model has 
captured additional incoherent energy.

Attenuation of non-compressional energy using 
rotational measurements
Conventional OBN data processing involves the separation of 
upcoming and downgoing wavefields. A successful separation 
requires high-quality compressional signals captured in both 
pressure and vertical motion records. A frequent problem is that the 
vertical sensor captures non-compressional energy corresponding 
to both shear and surface waves. This energy needs to be attenuated 
prior to acoustic wavefield separation. The conventional approach-
es described in the previous section are successful for dipping 
events at large offsets but are less effective in the near offset zone 
for flat events. That is because around the apex both compressional 
and non-compressional events appear flat, and therefore become 
less distinguishable in the transform domain.

A conventional OBN survey contains data from four receiv-
ers: a hydrophone to record pressure, and three orthogonal 
geophones to record particle velocity. During the Amendment 2 
OBN survey, in addition to the conventional four-component 
nodes, we acquired seismic data using two test nodes equipped 
with a new sensor type (Pedersen et al. 2023; Masoomzadeh et 
al. 2024). This new generation node contains a hydrophone and 

orientation dependent representation of the data, where noise and 
signal can be distinguished. To exploit this property, we first trans-
form both hydrophone and geophone records of a receiver gather 
from a survey in the Gulf of Mexico into the 3D curvelet domain. 
In this domain, thresholding based on the ratio of the curvelet coef-
ficients allows the conservation of events that are present in both 
hydrophone and vertical geophone data and then the attenuation of 
those events that are only present in the vertical geophone records. 
In the curvelet domain, the algorithm naturally honours the dip and 
frequency content of the input data. The thresholding step yields 
a noise model that can be inverse transformed back to the offset 
domain. Subtraction of the noise model from the input data removes 
non-compressional energy and gives the desired compressional sig-
nal. In addition, we would like to point out that the curvelet domain 
is not only suitable for the attenuation of non-compressional energy, 
but also facilitates additional processing steps including deblending, 
data dependent obliquity correction, and calibration of hydrophone 
and geophone measurements.

To better understand the benefits and drawbacks of the methods 
described above, we apply these methods to the data from one 
receiver and compare the resulting noise models (Figure 2). We start 
by comparing methods based on both 2D wavelet and 2D curvelet 
transforms, which internally use a similar thresholding scheme. 
Two passes of the 2D curvelet method (in both inline and crossline 
directions) yield a more coherent noise model than two passes of 
the 2D wavelet transform method (Figures 2a&b). Furthermore, our 
2D curvelet-based method better preserves the desired signals. This 
may be due to a finer dip sampling in the curvelet domain. A com-
parison of two passes of the 2D curvelet approach with a full 3D 
curvelet approach (Figures 2b&c) shows that the 3D method better 

Figure 1 3D curvelet denoising uses the hydrophone 
record (a) to attenuate converted body waves and 
surface waves in the vertical geophone record (b). 
This process decomposes the input geophone data 
into a signal model (d) and a noise model (c). The 
figures shown here come from a conventional four-
component OBN and were created by averaging 
traces for a given offset within a 45° azimuth angle 
range.
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should not be detected by a sensor that is designed to detect only 
rotational motions. Therefore, acquiring rotational data is par-
ticularly helpful for the purpose of separating compressional and 
non-compressional events appearing in the vertical translational 
component. Although the rotational sensors have successfully 
captured non-compressional energy, the recorded rotational signals 
are not identical to the non-compressional signals captured in the 
vertical translational record. Rotational records may be considered 
as spatial derivatives of translational records. In theory, we need 
to convert horizontal rotational data (i.e., rotations around the two 
horizontal axes) to simulate vertical translational data. We derived 
a formula for this conversion (Masoomzadeh et al. 2024) based 
on a flat earth assumption. Because of this assumption, it is only 
kinematically correct. To address the dynamic variations, we used 
simultaneous adaptive subtraction to optimally match two horizon-
tal rotational components to the vertical translational component 
and subtracted them from it.

To illustrate the advantages of the new data, we first present 
a data example together with the results from the proposed 
processing sequence (Figures 3&4). Comparing the hydrophone 
and vertical acceleration (Figures 3a&b) shows the presence of 
significant non-compressional energy on the vertical receiver 
in addition to the desired compressional energy. Comparing the 
vertical acceleration and the horizontal rotation shows that the 
rotational sensors capture non-compressional energy exclusively. 
This property makes the rotational data an ideal noise model for 
the adaptive subtraction (Figure 4b).

Comparing the results of the adaptive subtraction of horizontal 
geophones with the results of the previously presented 3D curvelet 
method allows interesting insights (Figures 4a&b). The adaptive  

six additional sensors. These six sensors are made of piezoelectric 
crystals mounted on the faces of a solid cubic frame, holding 
a metal sphere acting as an inertial mass. The crystals and the 
electronic circuit attached to them are designed to record voltages 
proportional to particle acceleration in a specific direction. Cru-
cially, a summation of output voltages from two parallel crystals 
on opposite faces of the cubic frame provides one component of 
the translational acceleration vector, while a subtraction of those 
outputs provides a component of the rotational acceleration vector 
in a perpendicular direction. In combination, this new generation 
node provides measurements of pressure, the full translational 
acceleration vector, and the full rotational acceleration vector.

An interesting property of the acquired rotational data is the 
absence of compressional energy in these recordings. The reason 
is that a pressure signal propagates by displacing particles in the 
propagation direction, meaning that those particles do not experi-
ence any rotations. For a better understanding, imagine holding a 
sponge ball in the palm of your hand, and an imaginary multi-sen-
sor receiver is present inside the ball. You may try the following 
actions to simulate compressional, shear and surface waves. First, 
squeeze the ball while maintaining its position and orientation. A 
hydrophone can tell you how firmly you are squeezing. Second, 
move the ball around without squeezing or changing its orientation. 
A set of orthogonal geophones can tell the speed and direction of 
those translational motions. Finally, roll the ball without squeezing 
or changing its location. A conventional node is oblivious to those 
rotational motions. Hence, the new sensor has been constructed to 
measure both translational and rotational acceleration vectors.

In the above experiment, we may notice that squeezing the ball 
does not change its orientation. This implies that pressure signals 

Figure 2 Noise models estimated using a two-pass 
2D wavelet transform (a), a two-pass 2D curvelet 
transform (b), a single pass 3D curvelet transform (c), 
and simultaneous adaptive subtraction of horizontal 
geophones from the vertical geophone (d). The 
arrows highlight areas where the 3D approach has 
removed more coherent energy than the two-pass 2D 
approach. The noise models correspond to the data 
shown in Figure 1, and traces were averaged for a 
given offset within a 45° azimuth angle range.
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sional events, but it is less successful at attenuating flat parts of those 
undesired events at near offsets. A combination of the two methods 
(Figures 4c&d) removes more noise than each individual method.

subtraction method successfully attenuates non-compressional energy 
in the near offset zone, where the curvelet method is less successful. 
The curvelet method successfully attenuates dipping non-compres-

Figure 3 Four of the seven recorded components from 
the novel OBN receiver deployed in the Gulf of Mexico. 
The hydrophone, vertical accelerometer, and the 
sensors measuring rotation around the x- and y-axis 
of the instrument were used in our noise attenuation 
processing sequence. The data correspond to a 45° 
stack for positive or negative offsets, respectively. 
Hydrophone, acceleration and rotation data have 
different ranges and are scaled independently.

Figure 4 Vertical acceleration after application of 3D 
curvelet denoise only (a), after simultaneous adaptive 
subtraction of the rotational measurements only (b), 
and the combined application of both methods (c). 
The difference between only applying 3D curvelet 
denoise and applying both adaptive subtraction and 
curvelet denoise demonstrates the improvement 
possible by combining the two techniques (d). The 
differences (d) are scaled up by a factor of 5. The 
results correspond to the data shown in Figure 3.
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interesting observations. First, the ML solution has not learned the 
transform artifacts apparent in the curvelet results. Second, the ML 
results are more conservative than the curvelet results – we observe 
less primary damage but more high-frequency noise in the signal 
display. Furthermore, the brute stack results for an entire receiver 
line (Figures 6a&b) demonstrate that the ML solution has success-
fully attenuated a significant amount of noise. Comparing the stacks 
of noise models for the curvelet and ML solutions (Figures 6c&d) 
demonstrates again that the ML solution is more conservative 
than the training data. Interestingly, the ML solution has removed 
additional noise at the beginning of the profile that was not removed 
by the curvelet method. This behaviour is due to the diversity of the 
training data and would be difficult to imitate by a human.

The conventional noise attenuation methods presented here 
can be used to create high-quality training data, which allows 
progress both in the short and long term. In the short term, train-
ing data can be created for each experiment separately, using a 
subset of receivers. Application of this customised network to all 
receivers for a single experiment has the potential to bring down 
the computational cost. In the long term, with the availability of 

Role of machine learning in non-compressional 
energy attenuation
The conventional methods of non-compressional energy atten-
uation presented above allow separating compressional and 
non-compressional signals in OBN data. However, these methods 
can be hard to parameterise for the user and costly to apply in 
terms of computational resources. In recent years, ML solutions 
have been deployed for different seismic processing tasks includ-
ing the attenuation of non-compressional energy in OBN data 
(Sun et al. 2023; Seher et al. 2024). These ML solutions allow 
significant reduction of computational cost, if the up-front cost 
of training the ML network is ignored. In addition, pre-trained 
networks minimise the human effort during processing.

To illustrate the potential of ML in the attenuation of non-com-
pressional energy, we trained a network using seismic data from 
two regions in the North Sea including the area North of Alvheim 
Krafla Askja (NOAKA). We then applied the denoising network to 
a line of receivers from the NOAKA region that was not included 
as part of the training data. Comparing the ML results with the 
curvelet results for a single holdout receiver (Figure 5) allows a few 

Figure 5 Comparison of 2D curvelet non-compressional 
energy attenuation and ML-based noise attenuation for 
a hold-out receiver. The curvelet and ML noise models 
(b&c) are qualitatively similar and a comparison of the 
signal models (e&f) to the vertical geophone (d) shows 
significant noise reduction for both methods.

Figure 6 Comparison of a brute stack before and after 
ML denoise (a&b). The differences between curvelet and 
ML denoise (c&d) show that ML denoise is overall more 
conservative but can be more flexible with respect to 
variable noise content. The noise stacks are scaled by a 
factor of 5 compared to the signal stacks.
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sufficient training data, we may be able to utilise a generalised 
network, at least as part of a fast-track processing workflow.

Finally, we have demonstrated that non-compressional energy 
attenuation is improved when the nodes are equipped with rotational 
sensors. The extra measurements of particle motions at the seabed 
can help to improve noise attenuation, and thereby provide superior 
training data for ML applications. This is of particular interest 
because we may only have to deploy the rotational sensors on a 
sparse grid to achieve the goal of improved denoising. The use of 
rotational data for ML applications will be a topic of future research.

Conclusions
Removing unwanted non-compressional energy such as surface 
waves and shear body waves from vertical motion recordings 
in OBN data is a critical step in acoustic wavefield processing, 
because this energy often interferes with the desired compression-
al signals. In this paper, we first reviewed conventional methods 
of attenuating this energy while highlighting their strengths and 
weaknesses. We then presented two significant advances – the use 
of rotational data and the application of ML methods.

While the conventional methods are effective overall in 
attenuating non-compressional energy, they struggle with the 
attenuation of flat events at near offsets. This shortcoming can be 
addressed by using a new type of receiver that measures the rota-
tional accelerations. These rotational measurements can be treated 
as a noise model and adaptively subtracted from the translational 
data. This method allows the attenuation of non-compressional 
events that are not distinguishable based on dip or frequency. 
Furthermore, combining conventional techniques with adaptive 
subtraction of rotational data provides superior denoising results.

Finally, we explored the potential of ML for the attenuation of 
non-compressional energy and argued that ML can significantly 
reduce the computational cost and human effort. Crucially, we 
demonstrated the applicability of ML solutions for non-com-
pressional energy attenuation as part of fast-track processing and 
showed its potential of outperforming a human data processor. 
In general, many ML techniques require the availability of 
high-quality and diverse training data. Relying on conventional 
processing solutions to generate these training data introduces 
subjectivity and error sources. Directly measuring the desired 
noise labels using rotational measurements has the promise of 
delivering superior training data and hence improving the noise 
attenuation results.
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