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In the current data analytics landscape of artificial intelligence, machine
learning, and multi-variate modeling, a key differentiator of a determinative
model is the quality and scope of the input data. Predicting well performance
with a high level of accuracy requires not only well production and completion
data, but also high-fidelity geologic data differentiating well landing

zones and reservoir quality. TGS, with an industry leading, high-quality,
comprehensive log library, is uniquely positioned to provide the geologic
context for the next generation of multi-variate predictive models and
subsurface interpretations.

However, correlating and interpreting well logs are necessary, labor-intensive tasks

for building large scale stratigraphic models used in multi-variate analytics, geomodeling,
and reservoir simulation workflows. Aside from the high resource and time constraints,
manual correlation and interpretations can also vary from interpreter to interpreter and
often do not make use of all well and log data available. These workflows often require
interpreters to focus on fine-scale details in a limited number of logs, making it challenging
and time-consuming to assess the large-scale structure of the subsurface. Furthermore,
generating accurate 3D property and stratigraphic volumes from well log data, especially
in horizontal sections of producing formations, faces obstacles such as data quality
variability, lateral reservoir variability, and the complexity of accurately modeling these
variations. There is a clear need for automation to improve efficiency and reproducibility.
Various approaches have been proposed to automate geological boundary detection
from well log data. Dynamic Time Warping (DTW) and artificial intelligence (Al) are promising
concepts for correlating signal sequences and extending to the domain of geology for
well-to-well correlation (Zoraster et al., 2004; Lineman et al., 1987; Smith and Waterman,
1980; Le Nir et al,, 1998; Baldwin et al.,, 1989; Luthi and Bryant, 1997; Po-Yen Wu et al., 2018;
Brazell et al., 2019; Tokpanov et al., 2020).

STUDY AREA

The study area of interest (AQI) is the Midland Basin,
spanning Glasscock, Howard, Martin, and Midland
counties. We use an extensive dataset of approximately
30,000 vertical and 6,550 producing horizontal wells
(Figure 1). The Midland Basin's size, complex geology,
stacked pay zones, and variable lithologies make
extensive manual interpretation prohibitively expensive
and therefore a good test case for this workflow.
The Chronolog (Sylvester, 2023) methodology
requires an initial input set of interpreted formation
tops to constrain the well log correlation. We select
interpreted formations tops that provide the largest
span of our 3D property generation spatially and
in-depth; these include the Rustler, Bone Spring/Upper ) o _ ) )

Figure 1: Map of well locations in the Midland Basin, covering Glasscock,

Spraberry, WOlfcamp' Strawn, Devonian Carbonate, Howard, Martin, and Midland counties, indicating vertical and horizontal wells.
and Ellenburger.
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METHODOLOGY

Data Selection and Pre-processing

Our well data preprocessing pipeline starts with automated data cleaning. It comprises
curve categorization, verification of information, splicing, merging, depth shifting,
normalizing, and quality editing. The gamma-ray curves are also standardized to an interval
from O to 1, an important step when evaluating numerical well-to-well correlation and for
the following well-curve imputation step. To maximize the collection of available well data,
we fill in missing log curves on the clean well data using a predictive Analytics-Ready LAS
(ARLAS) model (Gonzalez et al., 2023) trained specifically for the Permian Basin.

Using ARLAS, a consistent collection of five log curves are available in every interpreted
well: the bulk density, gamma-ray, neutron porosity, deep resistivity, and compressional
sonic curves.

Dynamic Time Warping-Based Well-to-Well Correlation
Chronolog uses a Dynamic Time Warping (DTW)
algorithm to align well logs based on manually
interpreted formation tops and normalized gamma-ray
curves pairwise. This method aligns geological features
across pairs of well logs, accounting for discrepancies
in deposition times or layer thickness resulting from
geological processes. A well connectivity graph is first 376
created to reduce the computational overhead of the
dynamic time warping, which is significant at the basin
scale. ChronolLog only evaluates pairwise correlations
for connected nodes in this graph. The edges of this
graph (Figure 2) represent proximity or relational ties
to neighboring wells. In parts of the AOI that are well
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covered spatially by interpretation, the graphis cut 310
between wells more than 3 km apart. We still attempt
. . X =1.140 =-1.138 =1.136 -1.134 =1.132 =1.130 =-1.128 =-1.126
to include data in parts of the AOI with sparse well Easting ()
coverage; here, a Delaunay triangulation creates
edges between wells, which are not subject to the 3 km Figure 2: Well connectivity graph showing pairwise well correlations.

maximum proximity. The objective is to ensure
a comprehensive network that facilitates as much
accurate stratigraphic analysis as possible.

DTW will always yield a result, even for unrelated sequences. For this reason, we filter the
set of well pairs based on the normalized DTW cost (Rath et al., 2003) for the pair. For two
sequences s, and s, and with length N, and N, this cost is:

C..=Costls, s, )IIN,*N,)

norm

S
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After computing this cost across our dataset

chronostratigraphic diagram

of wells, we identify pairs where the cost is greater
than the 99" percentile. The network connectivity
graph is cut for these pairs, and if a well is left
unconnected from the graph, it is removed from
the analysis. Using least-squares optimization, ke
Chronolog creates a consistent set of pair-wise depth v e
correlations (Wheeler and Hale, 2014). The result is L
a chronostratigraphic diagram that aligns the well
curves in relative geologic time (RGT) (Figure 3).
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ChronoLog then applies a Continuous Wavelet
Transform (CWT) and systematically identifies
stratigraphic boundaries by detecting zero-crossings
in the wavelet transform, indicating geological feature
changes (Cooper et al,, 2009). This segmentation is
later used to create aggregated 3D properties across
the basin. The scale parameter in this method can be
thought of as the bandwidth of a Ricker wavelet.

Less fine detail is retained as the scale increases.
This study uses a setting of 4 samples to produce

a rich set of stratigraphic layers without additional
manual interpretation.

600

Development of 3D Geological Models

Our workflow does not require every well to contain interpreted tops for every formation.
Instead, a basin-wide chronostratigraphic diagram is created in a layer cake fashion,
stacking diagrams and segmented sequences assembled for the Rustler, Bone Spring/
Upper Spraberry, Wolfcamp, Strawn, Devonian Carbonate, and Ellenburger formations.
For this reason, many of the wells in the dataset may lack certain stratigraphic layers
identified by ChronolLog.

A problem with naively filling in the missing sequences by a simple interpolated grid

is that the result may not preserve the correct sequence. This is particularly relevant
when geology is structurally complex. Instead, we use an iterative method based

on interpolating segment thickness relative to a common reference point, as shown
schematically in Figure 4. The algorithm starts with an established reference point across
the dataset, and then an interpolated map of segment thickness across the basin is
computed. This thickness map is then used to forecast the interval of this segment

in wells where it is missing. The top of the segment becomes the common reference
point, and the algorithm iterates until consistent segmentation exists in all wells.

With every stratigraphic top identified at each well location and characterized by a high
spatial density, we can now interpolate depth values and log properties beyond the
immediate areas surrounding the wells to generate maps with regular grids. This involves
gridding both the identified stratigraphic tops and the average property values found
between these tops, which serves as a foundation for building 3D geological models.
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Figure 3: Chronostratigraphic diagram illustrating the alignment of well logs
in RGT, utilizing normalized gamma-ray curves for Rustler formation.
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1) Building a thickness grid between top & base 2) Thickness mapping for missing locations
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Figure 4: A schematic depicting the iterative process for interpolating missing formation tops, involving two
main steps: 1) constructing a thickness grid between identified tops and bases, and 2) applying thickness
mapping to estimate missing formation tops.

Interpolated top 1

Extended Stratigraphic and Property Model

Expanding on the initial model, we now include all vertical wells in the dataset, regardless
of whether their formation tops have been manually identified. By plotting the locations

of these wells on the stratigraphic grids, we can identify previously missing formation tops
while using all existing log curve data from those wells. We address gaps in the log curve
data using the k-nearest neighbors algorithm, creating a comprehensive dataset and a
complete property model with both formation tops and comprehensive well log data.

This expanded effort allows us to develop 3D stratigraphic and log property models,
capturing each vertical well's known formation top and the log curve data. Following the
methodology of the initial model, we use spline interpolation to fine-tune the log curve
attribute grids. This technique ensures that geological features are depicted accurately,
avoiding overlaps, and ensuring continuity in our models.

CASE STUDY

In this section, we describe chronostratigraphic diagrams and log correlations generated
with the automated stratigraphic correlation workflow and highlight their value in interpreting
geological features. The workflow starts by selecting formations with well-supported
tops, such as the Rustler, Bone Spring/Upper Spraberry, Wolfcamp, Strawn, Devonian
Carbonate, and Ellenburger. We limited the distance between well pairs to 3,000 meters
for correlating wells. With a segmentation scale set at 4, we identified 1,570 stratigraphic

units for 1,939 wells, which helped us create a detailed gridded model. This setup enabled
precise spatial analysis.
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Development of Stratigraphic and Property Models

We developed a 3D geological model using well log data, featuring one stratigraphic volume
and six property volumes, including normalized gamma-ray, sonic, neutron porosity,
density, and resistivity. Each property volume offers insights into different aspects of the
geology. The model is structured as a volumetric array, resembling a stack of layers, each
representing a geological layer or formation (Figure 5b). This setup, visualized in Figure 5a,
assigns a specific X-Y-Z coordinate to every pointin the grid. We chose a 50-meter spatial
resolution for the X and Y axes to balance detail with computational efficiency. To validate
the accuracy of our 3D models, we generated synthetic logs for vertical wells within the
AQI. We calculated the normalized Root Mean Square Error (RMSE) against the existing
ARLAS logs. An example log track of a selected well in Figure 6 displays a comparison

for the neutron log, with ARLAS logs in blue and synthetic logs in red. Validation focused
on depth intervals with overlapping signals, showcasing the synthetic logs’ capability to
reconstruct a continuous signal throughout the wellbore. The findings show a normalized
RMSE between 10-15% across all compared well logs, indicating a relatively close match.

Chronolog &
ARLAS

(a) 3D Gamma Ray Volume ARLAS Chronolog
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Figure 5: (a) 3D gamma ray model; (b) Map view showing Figure 6: Log track comparison between synthetic logs (red)
the Wolfcamp formation top, represented as a stacked 2D and ARLAS (blue) for a selected well.

layer within the stratigraphic volume.
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Deriving Log Data for Horizontal Wells in Reservoir Analysis

Extracting log data from horizontal sections of wells is a critical step in understanding
and evaluating reservoirs. This process provides key insights that help make informed
decisions to optimize production, manage reservoirs effectively, and improve profitability.
To do this, we rely on two main data sources: directional surveys (DS), which give us

the X-Y coordinates for the paths of horizontal wells, and a set of 3D models of the
stratigraphy and property data from well logs (Figure 7. a - 7. ¢). Using the X-Y coordinates
obtained from DS, we map and collect the log curve data and the stratigraphic tops for
horizontal wells from the 3D models. We compute a comprehensive statistical analysis
on these sections to determine critical metrics such as the 2nd and 98th percentiles,
median, minimum, maximum, and average log responses (Figure 7b). This approach
allows the statistical analysis of any curve attributes, including petrophysical properties,
at any X-Y-Z coordinate.

(a) 3D Gamma Ray Volume in
Horizontal Wells

(b) P50 Log Values in Producing Intervals from GR Volume
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Figure 7: Diagrams showcasing well log data extraction from horizontal wells for reservoir analysis. (a) 3D gamma-ray volume analysis,
(b) median gamma-ray values in producing wells, and respective (c) formation names.

7 | WHITE PAPER: Log-Derived Multi-Variate Modeling and Subsurface Interpretation

TGS/



CONCLUSIONS

This case study presents a comprehensive overview of the advanced 3D geological
modeling and Chronolog automated stratigraphic correlation pipeline employed to
develop a geologic model of the Midland Basin's subsurface geology. These technologies
and workflows have enhanced the accuracy and efficiency of constructing 3D stratigraphic
and property models. The resulting interpretation is being evaluated or is currently being
used across various workflows. Geological properties from this model are extracted and
aggregated across the producing interval of actual and proposed horizontal wellbores

for use in multi-variate statistical models to benchmark and predict well performance.
Additionally, delineated formation horizons are cross-referenced with directional surveys
to assign production to detailed benches and landing zones. Furthermore, the full 3D
geologic volumes from this model are used to populate geomodels for well planning,
geosteering, detailed reservoir studies, and reservoir simulations.
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About TGS

TGS is headquartered in Oslo, Norway, and publicly traded on the Oslo Stock Exchange.
Our other main offices are in Calgary, Houston, London and Perth, and we have employees
in cities around the globe. Our primary business is to provide geoscience data to energy
companies worldwide. We offer extensive global libraries that include seismic data,
magnetic and gravity data, multibeam and coring data, digital well logs, production data
and directional surveys. Additionally, we offer advanced processing and imaging services,
interpretation products and data integration solutions.

Energy Starts With Us
TGS.com
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