
Elastodynamic modeling and inversion with reflectivity terms 
Cosmin Macesanu*, Guanghui Huang, Faqi Liu, Jaime Ramos-Martinez and Dan Whitmore, TGS 
 

Summary 

 

Significant advancements have recently been achieved in the 

use of full waveform inversion (FWI) methods for the 

derivation of high-resolution model parameters. In 

comparison to implementations using the acoustic 

approximation, it has been shown that accounting for elastic 

effects through the use of elastic equations significantly 

enhances the quality of inversion results. Additional 

improvements can be achieved by employing variable 

density parametrizations; however, the low frequency 

component of the density model is notoriously challenging 

to constrain properly. An alternative approach is aiming for 

the reconstruction of high frequency components of the 

density model, which can be achieved by reparametrizing 

the elastic equations in term of impedance or reflectivity. We 

demonstrate the benefits of this new parameterization by 

comparing synthetic data obtained from elastic impedance 

inversion to field data from an OBN survey.  

 

Introduction 

 

The additional physics embedded in the elastic wave 

equation enables elastic FWI (EFWI) to outperform the 

acoustic version in geologically complex areas like those 

with strong velocity contrast or areas associated with a 

reservoir showing abnormal AVO effects (Liu et al., 2024). 

However, in such areas (as well as for AVO) varying density 

effects may be as important as shear-wave effects. In the 

context of acoustic inversion, there are many examples 

showing the benefit of accounting for variable density 

through the inversion of impedance or reflectivity models 

(Yang et al., 2021; Rayment et at., 2023; Burren et al., 2025). 

This is achieved by a reparameterization of the acoustic 

equations in terms of velocity and impedance or reflectivity 

(Whitmore et al. 2020). We extend this approach to the 

elastic case, by reparametrizing the elastic equation in terms 

of impedance. We discuss the new formulation and 

demonstrate its accuracy and utility from synthetic and field 

data examples. 

 

Theory 

 

We start from the standard formulation of the elastic 

equations in terms of the stress and velocity variables: 
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The elements of the stiffness tensor  𝑐𝑖𝑗𝑘𝑙  are evaluated in 

terms of physical parameters such as the P and S wave 

velocities  𝑉𝑝, 𝑉𝑠, the density 𝜌, and Thomsen (1986) 

parameters for anisotropic media. Following the approach in 

Macesanu et al. (2024), we can redefine the stiffness 

components and velocity variables by scaling with the input 

density model: 
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This leads to the following equations: 
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In this formulation, the effect of variable density is 

encapsulated in the reflectivity terms proportional to 𝜕 ln 𝜌 . 

This explains why there is little sensitivity to the low 

frequency components of the density field. 

  

It is furthermore desirable to replace density as a parameter 

by the logarithm of the acoustic impedance ln 𝐼𝑝 =

 ln( 𝜌𝑉𝑝). This is advantageous both in terms of reducing 

cross-talk between parameters (Operto et al., 2013), and 

additionally by relating the parametrization of the elastic 

equations to measurable medium properties (impedance) 

useful for quantitative interpretation. Using the impedance 

as a free parameter also allows the separation of the FWI 

gradient in a low frequency component used for updating the 

background velocity and a high frequency component 

contributing to model reflectivity (Douma et al., 2010; 

Ramos-Martinez et al., 2016). 

 

After reparameterization, the stress update equation (3a) 

becomes: 
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Reflectivity components can be obtained either by taking the 

derivative of the logarithmic impedance after inversion, or 

by treating the reflectivity components as free parameters in 

the inversion (Whitmore et al. 2020). These fields may be 

defined by 
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We note that since these fields are not independent, for an 

inversion problem parametrized in terms of reflectivity the 

objective function should include additional constraints. 

 

Examples 

 

To illustrate the effects of the new equations with new 

parametrization (replacing density with impedance) we 

generate synthetic data using Eqs. (1) and (4) for the SEAM 

elastic model. Figure 1a) shows the logarithmic impedance 

in the area used for data simulation. Figures 2a) and 2b) 

show respectively synthetic data generated with input 

density (Eqs. 1), and data generated with input log-

impedance (Eq. 4). The differences in the two results are 

minimal and can be explained by numerical differences in 

the implementation of the finite difference solution for the 

elastic equations. 

 

We note however that in practice one is not able to derive an 

impedance model similar to that of Fig 1a) from the 

inversion of field data. Typically, impedance models derived 

by inversion lack some of the low frequency components; to 

test the effect of the missing components, we remove the low 

frequency in the original model by applying a radial 

(Laplacian) filter in space domain. The resulting filtered log-

impedance is shown in Fig 1b); data generated using this 

model is displayed in Fig 2c). By comparison with the data 

generated with full bandwidth impedance we see that the 

synthetics are substantially similar, thus indicating that 

inverting for a bandpassed-version of logarithmic 

impedance model can lead to a successful match with the 

input/field data.  

 

One of the benefits of using impedance/reflectivity as an 

independent parameter in inversions is that it allows for a 

better match with the field data. To illustrate this, we show 

an example from an inversion of an OBN dataset from 

Brazil. We apply a workflow consisting of a velocity-only 

phase matching inversion scheme (Elastic Dynamic 

Matching FWI), followed by multiparameter inversion 

employing scale separation for the velocity and impedance 

gradients, as described in Huang et al. (2024). Figures 3a) 

and 3b) show the velocity model (inline and crossline 

sections). The velocity model provides good kinematic 

match for the events in the data, however, since the E-

 

Figure 1:  Models used for generating synthetic data: a) 

logarithmic impedance b) filtered log-impedance 

 

Figure 2:  Synthetic data generated with: a) density model b) log-impedance model and c) filtered log-impedance. 
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DMFWI cost function emphasizes the phase of the events, 

amplitude information is suppressed, and as a result the high 

frequency components of the model are attenuated. The 

multiparameter inversion stage which employs an L2 cost 

function sensitive to amplitude generates these higher 

frequency components and inserts them mostly into the 

impedance parameter. Figures 3c) and 3d) show the normal 

reflectivity, derived from the derivatives of the impedance 

and local dip structure. As expected, the normal reflectivity 

model shows significantly higher frequency content 

compared to velocity. 

 

For data comparison, Figure 4a) shows a common receiver 

gather from the OBN dataset. The top of the salt primary 

event and reflections off the salt base and pre-salt strata are 

indicated by arrows. Later events are multiples. Figure 4b) 

shows the synthetic gather after the application of the 

multiparameter inversion workflow for velocity and 

impedance update. One can note a good match between the 

input data and the synthetic, in terms of phase as well as 

amplitude, for both primaries and multiples. This indicates a 

successful inversion for both velocity and acoustic 

impedance.  

 

Conclusions 

 

The success of full waveform inversion relies on the 

accuracy of the equations used to model the field data. 

Increasing the complexity of the physics embedded in the 

modeling equations bring the synthetic simulation closer to 

the ground truth. Thus, moving from the acoustic 

approximation to elastic equations brings significant 

benefits in the quality of inversion results. Accounting for 

the effects of varying density constitutes a further 

improvement in the accuracy of seismic modeling and 

inversion. 
 

In this abstract we have presented a form of the elastic 

equations where the effects of variable density are 

parametrized in terms of an acoustic impedance model, a 

quantity easier to estimate from surface seismic data. We 

have shown that this parametrization produces equivalent 

results to the standard equations. Moreover, we have shown 

 

Figure 3: Inversion results from OBN field data, showing velocity model (top) and normal reflectivity (bottom);  left : inline section, right : 

crossline section.  
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that taking into account impedance through a multiparameter 

approach (which inverts for impedance in addition to 

velocity) improves the match of the synthetic to field data, 

which is expected to benefit the inversion process.     
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Figure 4: a) OBN receiver gather field data b) synthetic gather following velocity + impedance inversion 


