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Summary 
 
In recent years, machine learning (ML) has become a crucial 
and integrated component of the seismic processing 
sequence. Most applications, however, have focused on pre-
processing steps such as de-ghosting, de-noising, de-
multiple, interpolation, regularization, and interpretation 
(e.g., horizons and well logs). In contrast, there have been 
fewer applications of ML for velocity model building 
(VMB) on field data examples. This is likely due to the 
significant variability in the Earth’s geology, the high 
dimensionality of seismic acquisition, and the challenges of 
mapping long-range velocity dependencies across different 
domains, both in image and data domain gathers. 
 
In this work, we utilize a deep neural network comprising a 
series of Fourier neural operators (FNOs), convolutional 
neural networks (CNNs), and fully connected neural 
networks (FCNs) to map velocity errors within the image 
domain. The network is trained to perform tomographic 
updates based on synthetic data, effectively replacing the 
conventional reflection tomographic engine. We 
demonstrate the performance on several field data examples 
from different basins worldwide, showcasing how this 
methodology can improve or assist conventional 
tomography, and help condition the model for full waveform 
inversion (FWI). 
 
Motivation 
 
Although the motivation for this work is mainly to assist and 
accelerate the VMB sequence, deep learning also has the 
potential to understand and handle the data differently and 
mitigate limitations with conventional model building tools 
like reflection tomography and FWI.   
 
Traditional reflection tomography relies on residual move-
out (RMO) picks and a priori information to guide velocity 
updates. However, flat gathers do not always indicate a 
correct velocity model. Additional information, such as un-
collapsed diffractions and event crossings in the common 
angle/offset domain, also provides crucial insights into 
velocity errors. Furthermore, we know that ray-based 
methods struggle in high-contrast media, necessitating 
special handling or interpretation to manage geobodies and 
other non-smooth features. While FWI is general enough to 
handle these complexities, it is computationally intensive, 
especially when high-frequency elastic modeling is required. 
In addition, both FWI and tomography linearize the highly 
nonlinear inversion problem by taking incremental steps in 
the gradient direction, resulting in a time-consuming process 
with numerous iterations and high compute cost. 

 
In this study, we employ a deep neural network as a 
tomographic operator, effectively replacing the conventional 
tomographic inversion engine. The network is trained using 
migrated gathers alone, without relying on RMO picks, 
horizon picks, or salt masks, to identify a wide range of 
smooth and sharp velocity features. This approach allows the 
network to recover the true velocity model from various 
incorrect model realizations more quickly and introduce 
larger velocity updates compared to traditional reflection 
tomography and FWI. Additionally, this method opens the 
possibility of training the model with diverse data types, 
including data with multiples, further accelerating the VMB 
sequence. 
 
Methodology 
 
Our approach leverages a network architecture composed of 
integral operator blocks (IOBs) integrated with 
convolutional neural networks (CNNs). Unlike traditional 
CNNs, IOBs are designed to capture long-range 
dependencies within the data. The incorporation of Fourier 
neural operators (FNOs) has facilitated non-local feature 
detection, global representation, and mesh independence. 
These neural operators have demonstrated significant 
potential in addressing complex and computationally 
intensive equations, such as partial differential equations (Li 
et al., 2021). 
 
Initially, our training process aimed to directly map velocity 
errors from data to the image domain (Huang et al., 2023). 
Recently, we have refined our approach by 1) adapting the 
network to map velocity errors within the image domain, and 
2) expanding the training process by generating and 
processing additional labeled data. These enhancements 
have resulted in a solution that inputs depth-migrated gathers 
along with the corresponding velocity model and outputs the 
predicted velocity update (Crawley et al., 2024). Figure 1 
illustrates the micro and macro network design. 
 
The forward propagation within the IOB begins by lifting the 
data, increasing its dimensionality through a fully connected 
network (v(x)). This is followed by a forward Fourier 
Transform (FT) and an inverse transform of the most 
energetic wave modes. A version of the data is also routed 
outside the FT path and combined before an activation 
function completes the FNO layer. The data is then 
normalized and passed to another fully connected network, 
the multilayer perceptron (MLP). We employ dropout and 
skip connections as regularization strategies, allowing us to 
increase the depth of the trainable neural network, which is 
crucial for learning these complex operators. A series of 
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IOBs are connected with CNNs before the final predictions 
are made using another MLP. 
 
Mapping from the image-to-image domain reduces the data 
dimensionality that the network must handle, potentially 
simplifying the learning process. The network has been 
trained on synthetic 2-D data from approximately 50,000 
different velocity models representing various geological 
scenarios, including different water depths and background 
sediment velocity trends, as well as salt bodies and slow 
velocity anomalies of different shapes and sizes. Data 

augmentation takes the form of different degrees of velocity 
errors for a given true model, and different degrees of post-
processing on the migrated gathers.  
 
Our strategy has been to develop this as an iterative, 
interactive workflow. The predicted velocity model from the 
first pass is used in a new migration process, forming the 
input for the second pass of predictions. The number of 
iterations required depends on the complexity of the 
problem, but experience shows that 2-5 iterations are 
typically sufficient to resolve the macro model.

 

 
Figure 1: This shows the network architecture, consisting of a series of IOBs and CNNs. The FNOs facilitate the learning of long-range dependencies 
in the data. 

Examples 
 
In our first example we investigate using the trained network 
to build the initial FWI model directly from a simple 1D 
gradient. Figure 2a and 2b shows the initial velocity model 
with the single shot FWI gradient overlayed and the 
observed data interleaved with data modeled using a 
reflectivity formulation of the wave-equation (Whitmore et 
al., 2020). Figure 2c and 2d shows the corresponding results 
after two iterations of FNO-network predictions. The 
updated velocity model is structurally sensible and leads to 
significant improvements of the data-alignment, especially 
for the far offset refractions (yellow ellipse). The forward 
modeling was done at 9Hz, which is unrealistically high for 
an initial FWI run, but it is done to show more of the model 
complexity in this dataset.  

Figure 2: Single shot FWI kernel overlayed on the initial velocity 
model a) and the corresponding interleaved observed and modeled 
data in b). Equivalent displays after two iterations of FNO-network 
predictions in c) and d). The forward modeling was done with 9Hz 
maximum frequency to show more of the complexity in the data. 
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Notice the significant improvements in the data-alignment after the 
FNO-network predictions. 
In the next example we make use of the FNO-network 
predictions to replace tomography for the deepest model 
building unit. The shallow to intermediate depth-intervals 
had undergone a significant amount of FWI and tomography 
and were considered resolved. The dataset is multi-
component streamer acquisition in the Norwegian Sea and 
covers approximately 6.000km². Figure 3a and 3d show an 
inline and depth slice at 5km depth with the model prior to 
the FNO-network predictions and figure 3b, c, e and f show 
the predicted results with and without the image overlay. The 
updated model is structurally consistent with the seismic 
image and the magnitude of change is typically much higher 
than what we would achieve with conventional gradient 
updates (up to 1km/s). In the deeper section, the network has 
predicted a series of volcanic intrusions and sills. These 
formations are generally fast and could be as fast as salt-
velocities or higher.    
 
The final example is from the Agung area, located north of 
Bali, a geologically complex region influenced by the 
subduction of the Indo-Australian Plate. This region, part of 
the Sunda volcanic arc, is characterized by significant 
tectonic activity, including compressional thrust faulting and 
volcanism. The basin is highly deformed and faulted, with 
carbonates serving as the primary reservoir rocks. 
Identifying volcanic rocks from carbonates in seismic data is 
crucial for exploration in this area. 
 
In 2023, a newly acquired marine streamer dataset (10 km 
offset) provided a high-quality seismic dataset to improve 
the imaging of carbonate reservoirs and distinguish them 
from volcanic rocks. The input model to the FNO network 
was partially derived from a multi-client VMB sequence, 
which included tomography, low-frequency (8 Hz) FWI, and 
initial basement interpretation. 

 
Figures 4a and 4b show a cross-section of the initial and 
updated models after two iterations of FNO network 
predictions, with the corresponding RTM image overlaid. 
Similar displays are provided for a depth slice at 3 km in 
Figures 4e and 4f. The accumulated velocity update is shown 
in Figures 4c and 4d, and the RTM image alone is shown in 
Figures 4g and 4h. As indicated by the yellow arrows, 
several high-velocity geobodies have been introduced by the 
FNO network predictions where volcanic intrusions and sills 
are expected. The area beneath the volcanic activity causes 
distortions in the initial image, while the basement structure 
becomes better focused after the FNO predictions (orange 
ellipse). 
 
Conclusions 
 
In this work, we have demonstrated how deep learning can 
be utilized for VMB, to condition the initial FWI model by 
reducing cycle-skipping and constructing a geologically 
consistent and sensible velocity field. Furthermore, we have 
demonstrated that even a few iterations of the FNO-network 
predictions can enhance tomographic updates and 
significantly improve the imaging results. This approach 
eliminates the need for RMO picking, interpretations, or 
special handling of sharp high-velocity contrasts. The 
network leverages FNOs, which have non-local behavior 
necessary for image-domain velocity updates. While the 
results are promising, it is crucial to avoid treating the 
prediction process as a black box. Model validation remains 
essential. 
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Figure 3: Inline of the initial a) and FNO-predicted velocity model b) and with the stack overlay in c). Depth slice at 5km of the initial d), FNO-
predicted e) and with the stack overlay f). Notice the level of details and the magnitude of the update achieved after a single iteration of prediction 
and the structural consistency of the results. The FNO-network has detected several volcanic intrusions and sills at different levels in the deep 
section. 
 

Figure 4: Cross-section of the initial a) and FNO-predicted model b) with image overlay. Accumulated velocity update after two iterations of FNO-
predictions in c) and the corresponding RTM image in d) and h). Figure e), f) and g) shows a depth slice at 3km of the initial, FNO-predicted and 
the accumulated velocity update. Notice the structural consistency of the predicted model and how it maps out the volcanic structures. The RTM 
image is significantly improved in the deepest section, revealing more of the basement structure, after solving the shallow complexity with the FNO 
network predictions. 

 


