
MDIO v1: schematizing seismic data for AI and processing
Brian Michell*, Altay Sansal, Ben Lasscock, Mark Roberts

TGS

Summary

The MDIO format is an open-source storage solution for

seismic data, designed for processing, AI training and

inference, data management, and visualization. Built on top

of the open-source projects Zarr, Blosc, Xarray, and

TensorStore, it enables efficient access to large datasets on

both local and cloud storage, reducing costs and enhancing

accessibility. MDIO v1 introduces a structured dataset

model that includes Metadata, Variables, Dimensions, and

Coordinates, simplifying the organization and use of seismic

data. It is interoperable with Python’s Xarray format to

ensure compatibility with scientific workflows and natively

supports Dask for parallel processing. A native C++

implementation based on Google’s TensorStore library

offers options for integrating MDIO with existing processing

systems.

We present case studies highlighting the benefits of MDIO

in seismic workflows, such as rapid SEG-Y ingestion, cloud-

based I/O with an example from the AWS Open Data

Registry, and the use of structured metadata for pre-stack

and post-stack visualization. MDIO enhances efficiency in

large-scale geophysical analysis and AI applications by

clearly defining the relationships in seismic data.

Introduction

The open-source MDIO format (Sansal et al., 2022) has been

widely utilized to represent seismic data in digital

workflows, including artificial intelligence (AI) model

training, data management, and data visualization on web

applications. The MDIO format is inherently designed to be

completely open source, building on the cloud-native storage

format Zarr (Miles 2023) and utilizing compression codecs

from Blosc (Haenel, 2014). This design achieves significant

cost savings for storing large seismic data libraries in the

cloud. MDIO data is accessible and self-describing, enabling

efficient access from both local disk and cloud storage.

Previous applications of MDIO include serving pre-stack

seismic data for training AI denoising models on a global

dataset scale (Brusova et al., 2021; Valenciano et al., 2022),

conducting salt interpretation at a basin scale (Warren et al.,

2023), and providing wind resource assessment data with

analytics to web applications (Sansal et al., 2023). More

recently, MDIO has been crucial in training large 3D seismic

foundation models (Lasscock et al. 2024, Sansal et al. 2025a,

Sansal et al. 2025b), where efficient access to data from a

global seismic data library has been essential.

This study illustrates how MDIO v1 enhances the

conceptualization of seismic data diversity, including pre-

stack data. With its native C++ implementation (TGSAI,

2025), MDIO v1 provides better integration with established

seismic processing frameworks such as Madagascar (Fomel

et al., 2007), further broadening its impact across the

industry.

MDIO v1: A Technical Overview

The newly released MDIO v1 revision is designed to

enhance the contextualization of seismic data and improve

support for visualization and seismic processing. The core

concept within MDIO v1 is the Dataset, which represents a

collection of related Variables and additional Metadata such

as coordinate reference systems (CRS). Each Variable is an

array of data with clearly defined Dimensions, optional

Coordinates, and additional Metadata—such as histograms

and units. Coordinates contain array data that provide further

context for the Variables, for example, by supplying latitude

and longitude or cdp-x and cdp-y. A template for an MDIO

Dataset (including its Variables, Dimensions, and

Coordinates) is outlined by a JSON schema. This approach

enables users to customize data structures to their needs,

creating self-describing data for specialized applications.

Moreover, the semantics of the MDIO Dataset are designed

to interoperate seamlessly with Xarray, a Python library

widely used in earth sciences for constructing self-

descriptive datasets (Hoyer et al. 2022, Hoyer et al. 2025).

As a demonstration of Xarray and MDIO's capability to

manage data on a global scale, Figure 1 presents a snapshot

of global ERA5 model wind speeds (Hersbach et al. 2020),

which are part of the 6 Petabyte ERA5 open climate dataset.

Figure 1: Global wind speed at an instant in time,

accessed from the ERA-5 climate dataset hosted by

Google Cloud marketplace.

For Python users, Xarray interoperability with MDIO v1

files offer built-in support for Dask (Rocklin 2015), enabling

the parallel and distributed computing necessary to scale

seismic processing and related applications. An open-source

native C++ implementation of MDIO, built on Google’s

TensorStore library (TensorStore 2022, TensorStore 2025),

is also available. TensorStore provides scalable multi-

dimensional array storage, support for open-source

compression methods (Haenel 2014), and native cloud I/O

capabilities. By efficiently managing multi-dimensional

data, TensorStore frees developers using MDIO from

manually handling thread pools, caching, compression, and

cloud-native storage, allowing them to focus on domain-

specific data processing instead (Google Research 2022).

Through TensorStore, MDIO v1 offers native C++ support

for object storage on all major cloud providers and local file

systems. Furthermore, the C++ implementation of MDIO

can be integrated with existing seismic processing

frameworks, such as Madagascar (Fomel et al. 2007).

From a data management perspective, MDIO provides

considerable cost savings for cloud storage compared to

SEG-Y. MDIO has shown an average of 31.5% lossless

compression at large scales relative to SEG-Y using Blosc

with Zstd codec, as demonstrated by 15 PB of seismic data

stored in Google Cloud. Another significant advantage of

chunked cloud storage is that each chunk is treated as an

individual file in a bucket. Since most files are stored in low-

cost archive storage, only the necessary chunks need to be

retrieved and transferred to higher-tier storage when data or

metadata are accessed—thus achieving considerable cost

savings over time.

Finally, SEG-Y is the standard for exchanging seismic data

in the seismic industry. Tools are available for efficiently

exporting SEG-Y data to MDIO in the cloud, hybrid cloud,

or on-premises. Figure 2 shows the ingestion time for

converting a SEG-Y file to MDIO format, with both files

stored in a cloud object store, demonstrating that ingesting

to MDIO is scalable on standard cloud hardware.

Case Study: MDIO on AWS Open Data Registry

The Poseidon 3D Seismic Dataset, made available courtesy

of ConocoPhillips and Geoscience Australia, has been

published on the AWS Open Data Registry in MDIO v1

format. Figure 3 shows the dataset schema for the full-stack

volume of the Poseidon dataset. An MDIO Dataset includes

Figure 2: Benchmarks demonstrating cloud-to-cloud SEG-Y to MDIO format conversion, where both source and destination

exist only in the cloud. Solid line shows mean wall time as a function of SEG-Y file size and shaded region shows total time

distribution. (left) The time required to scan the SEG-Y headers, (center) the ingestion time, (right) the overall ingestion time.

Figure 3: The MDIO v1 schema associated with the

Poseidon, full-stack seismic dataset.

Metadata, Variables, Dimensions, and Coordinates. In this

case, the dataset presents seismic data and headers as

Variables, while the inline, crossline, cdp-x, cdp-y, time, and

trace mask (labeling live traces) function as Coordinates.

MDIO utilizes a chunked data format; in this scenario, the

seismic variable is stored in isotropic 1283 chunks (8 MB

each), a chunk size optimized for both the storage medium

and expected data access patterns. Due to the isotropic

chunking, read times remain consistent across the inline,

crossline, and time dimensions relative to their shape.

Additionally, by separating coordinates from the seismic

headers, tick labels can be accessed more efficiently,

simplifying visualization tasks (see Figure 4).

To demonstrate concurrency within the MDIO C++ library,

we benchmarked the performance of reading an

uncompressed 3D MDIO Variable from Google Cloud

Storage to various virtual machines (VMs) in the same

region. Figure 5 illustrates the throughput (in gigabytes per

second: GB/s) as a function of the number of physical cores

on each VM, highlighting the library’s ability to scale

performance by utilizing additional threads. In this

benchmark, we observed that as the VMs' available memory

exceeded the Variable’s size, the throughput experienced

diminishing returns.

The Poseidon use case highlights the significant advantages

of the MDIO v1 format in performance, storage efficiency,

and data accessibility. Because the MDIO chunked data

format is flexible, it can adapt to support diverse access

patterns—a feature particularly relevant for building seismic

foundation models, where rapid access to 3D data subsets is

essential (Lasscock et al. 2024, Sansal et al. 2025a, Sansal et

al. 2025b). For optimal use in cloud storage, chunk sizes of

approximately 8–10 MB are recommended (Sansal et al.,

2022). In the Poseidon example, coordinates make the

dataset self-describing and eliminate the need for non-

standard headers, thereby enhancing interoperability. The

MDIO Poseidon data is openly available and can be accessed

via Xarray in Python or using the MDIO C++ library.

Case Study: MDIO Pre-Stack Seismic Data

Leveraging MDIO coordinates and metadata associated with

seismic datasets enables more advanced workflows. Figure

6 illustrates an MDIO schema for a 3D streamer dataset,

where coordinates are stored as auxiliary arrays in an object

store. By employing templated MDIO schemas, each

seismic data type standardizes its available metadata and

provides rapid access to this information, thus ensuring

Figure 5: We benchmarked a small test volume reading

from the cloud for machines with an increasing number

of vCPUs and memory.

Figure 4: Shows inline, crossline and time slices

extracted from the Poseidon Dataset hosted on AWS

Open Data. Tick-labels read from Coordinates.

reproducible dataset descriptions and facilitating batch

processing. In this example, the 3D streamer dataset’s

coordinates include shot and receiver X/Y locations, and gun

numbers for shot gathers.

By utilizing readily accessible Coordinates, users can

efficiently filter data—for example, by selecting a unique

{gun, cable, channel} combinations to produce common-

channel gathers, or by {shot_point} to generate 3D shot

gathers. These filtering capabilities and on-demand access to

geographic coordinates (shot-x, shot-y, etc.) also allow for

the windowing of data (needed for processes such as SRME

and 5D-regularization) and for visualization and QC of the

acquisition geometry without needing external information.

Additionally, the filtering capabilities enable an in-memory

merging of data volumes and vintages, enhancing advanced

processing workflows and analytics while avoiding issues

such as data duplication.

Figure 7 illustrates two data products derived from the

MDIO Dataset: (top) a decimated view of streamer

acquisition geometry in real-world coordinates, with shots

color-coded; and (bottom) a gather for a specific cable and a

receiver obtained by slicing the data using the available

Coordinates {cable, channel}.

Conclusions

MDIO v1 offers an open, scalable, and efficient framework

for managing seismic data across AI training, data

management, and processing workflows. By building on

established libraries such as Zarr, Blosc, Xarray, and

TensorStore, MDIO supports seamless access to large-scale

datasets in both local and cloud environments. Its structured

design—encompassing Metadata, Variables, Dimensions,

and Coordinates—facilitates interoperability with Python-

based systems and parallel computing through Dask

(Rocklin 2015), while the native C++ implementation

effectively integrates with existing C/C++ seismic

processing platforms.

Case studies, including large-scale SEG-Y ingestion and the

Poseidon 3D seismic dataset, demonstrate MDIO’s potential

for efficient cloud-based I/O, substantial cost savings

through compression, and reliable data filtering and

visualization. By decoupling seismic data from header

metadata and adopting chunked storage strategies, MDIO

streamlines retrieval for both pre-stack and post-stack

analysis, enabling reproducible and high-performance

workflows that address traditional seismic exploration needs

as well as AI-driven applications.

Figure 6: The MDIO v1 schema associated with a 3D

streamer dataset.

Figure 7: (Top): A Decimated streamer and shot

geometry for a 3D offshore seismic dataset derived from

MDIO coordinates. Bottom: A gather sliced from an

MDIO dataset, showing gather for a specific cable shot,

x/y combination.

