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Summary 

 

We present a 60M-parameter well log vision transformer 

foundation model trained using a masked autoencoding 

framework (ViT-MAE). This model was pretrained on 1.1 

million North American well logs for automated well log 

imputation and subsequently extended to execute prompt-

based geologist-guided formation top interpretation as a 

downstream task. The formation model was fine-tuned on 

271,972 human-interpreted formation tops from 44,062 

wells across the Permian Basin, covering 37 formations. 

Unlike classification-based approaches, this prompt-based 

method for predicting formation depth facilitates training on 

a vast collection of existing interpreted wells. The 

foundation model and geologist-guided interpretation 

method are crucial for accelerating prospect generation by 

integrating AI-driven geological analysis into exploration 

workflows. 

 

Introduction 

 

This study explores how emerging AI techniques can 

transform formation interpretation in the oil and gas sector 

through large-scale pretraining, and prompt-based inference. 

Inspired by the scalability of self-supervised Masked 

Autoencoder Vision Transformer (ViT-MAE) (He et al. 

2022) in seismic interpretation (Lasscock et al. 2024b; 

Sansal et al. 2025a; Sansal et al. 2025b), we introduce a 

60M-parameter foundation model pretrained on 1.1 million 

cleaned North American well logs across multiple basins —

one of the largest well-log training datasets. The model 

learns geological patterns for well log imputation, enabling 

it to fill in missing curves by leveraging inter-log 

relationships. We created a prompt-based formation top 

interpretation model to demonstrate a downstream task built 

on this foundation model. The model takes as input well log 

and a formation name as a prompt, then predicts the 

requested formation depth in feet.  

 

Previous studies have explored AI-driven formation top 

predictions using support vector machines (Hall et al. 2016), 

convolutional neural networks (Liu et al. 2018), 

classification models (Ibrahim et al. 2023), and artificial 

neural networks (Elkatatny et al. 2019). More recently, 

functional neural networks (Mahmoud et al. 2024) have been 

examined for real-time formation prediction. While 

promising, these methods are often limited to in-domain 

applications, relying on restricted datasets. In addition to 

these methods, semi-supervised approaches have been 

developed to broaden geological interpretations beyond 

initial formation tops. Gonzalez et al. (2024) applied this 

technique in the Midland Basin to generate 3D property 

volumes, while Halder et al. (2024) utilized it to construct an 

accelerated stratigraphic framework for CO2 storage 

assessment. A large-scale training of a time-series 

transformer model with classification-based formation 

prediction built on a pretrained model was also conducted 

(Lasscock et al. 2024a). Unlike classification-based 

formation interpretation models, the prompt-based approach 

in this study removes the need for consistent label 

taxonomies or densely labeled training data, making it 

adaptable to the largest possible collection of interpreted 

datasets and extensible to adding new formations. 

 

The formation top interpretation methodology introduced in 

this study has three key innovations: 

 

• Transfer Learning Architecture – Built on a pre-

trained ViT-MAE model, the system leverages masked 

well log reconstruction to develop a deep understanding 

of subsurface patterns, fine-tuned for formation top 

prediction. 

• Formation Pattern Recognition – trained on 271,972 

manually interpreted formation tops across 37 

geological formations, the model learns characteristic 

patterns of formation boundaries. 

• Geologist-Guided Interpretation – Instead of 

identifying predefined formations, users specify a 

formation of interest (e.g., "Top Wolfcamp"), allowing 

targeted predictions. 

 

This approach aligns with industry trends toward promptable 

foundation models, addressing challenges like incomplete 

formation picks and reliance on manual interpretation. By 

enabling accurate depth predictions conditioned on a 

prompt, the model augments geoscience expertise rather 

than replacing it. 

 

Dataset 

 

A key feature of this study is building a large-scale AI-driven 

well log analysis framework trained on 1.1 million wells 

from the major U.S. basins. The dataset spans 16 basins, 

including the Permian Basin (Delaware, Central Basin 

Platform, Midland), Gulf Coast, Anadarko, and Marcellus 

(shown in Figure 1), providing a diverse geological 

representation of conventional and unconventional 

reservoirs. 

 

Before training, we established a well log cleaning pipeline 

to ensure consistency and quality across the dataset. This 



process involved categorizing each log curve, verifying LAS 

and log header information, splicing and merging logs from 

different runs, depth shifting for alignment, normalizing logs 

to account for tool and environmental effects, and removing 

or editing low-quality data (Gonzalez et al., 2023). A key 

design principle was to minimize human interpretation, 

enabling a scalable, basin-wide application. The main curve 

categories include Gamma-ray, Neutron Porosity, 

Compressional Sonic, Bulk Density, and Resistivity. The 

formation-picking model was built using a dataset of 

271,972 manually picked formation tops sampled from 

44,062 wells across the Permian Basin. This dataset includes 

37 interpreted formation tops, covering a broad stratigraphic 

range from shallow evaporites to deep carbonate and clastic 

reservoirs. The distribution of tops varies significantly, as 

illustrated in Figure 2, with higher-density interpretations in 

key formations such as Wolfcamp, Bell Canyon, Rustler, 

Bone Spring, Salado, Strawn, Devonian Carbonate, Brushy 

Canyon, and Glorieta. These formations are thoroughly 

mapped across the Delaware Basin, Central Basin Platform, 

and Midland Basin, making them essential reference points 

for stratigraphic correlation and machine learning-based 

formation top prediction.  

 

 
 

 

Methodology 

 

Training the well log foundation model 

 

In this paper, we pretrain a foundation model for well log 

imputation. We train a long-context, anisotropic ViT 

encoder with multi-head self-attention (12 heads) across 8 

layers in a 768-dimensional latent space and a feedforward 

network (FFN) size of 3072. The input well log can reach 

depths of up to 24,000 ft (at 0.5 ft per sample) and include 

one or more of the five primary curve categories. The model 

tokenizes each well log curve into patches of length 16. It 

incorporates flash attention for efficiency and query-key 

normalization (QK norm) for stability, with a 10% dropout 

for both attention and feedforward layers. A smaller decoder 

with the same architecture is used for imputation. The model 

is trained (self-supervised) with a masking ratio of 60% and 

is evaluated on the task of well log imputation (Gonzalez et 

al. 2023). 

 

Downstream application: Formation top picking 

 

An interpreter is intended to guide the inference of a 

formation depth and input a formation name (one of the 37 

formations currently supported by the model). Instead of 

treating formation names as simple categories, we embed 

them into the same high-dimensional space as the well data, 

as shown schematically in Figure 3.  

 

 
 

This embedding of formation data is integrated into the 

latent representations produced by the trained, frozen ViT 

encoder, effectively conditioning the model for the target 

formation. The conditioned representations are then 

processed through a decoder that generates token-level 

features. A learned attention mechanism scores these tokens 

to emphasize the most relevant ones. By calculating a 

weighted sum of the token features, we create a context 

vector that informs the final regression layer, which predicts 

the formation depth. This blend of transfer learning, 

formation-specific conditioning, and attention-based 

 
Figure 1. Map showing the spatial distribution of wells used for training 

(blue) and formation top interpretation (orange) across key U.S. basins. 

 
Figure 2. Counts for the 12 (of 37) most frequently interpreted 

formations in the dataset. 
 

 
Figure 3. A schematic view of the Well log autoencoder with a formation 

regression head. The encoder is trained independently and frozen when 

training the regression model. 



aggregation allows us to train with the existing data without 

needing a consistent interpretation across all wells. 

Formation tops interpreted in 8,813 wells, totaling 54,149 

formation top picks, were withheld for validation, while the 

remainder was used for training. This ensures we can assess 

the model’s ability to interpret blind test wells. 

 

Results 

 

Imputation: Filling in Missing Logs 

 

Existing state-of-the-art well log imputation techniques 

(Gonzalez et al., 2023) ensemble multiple models to fill in 

various collections of curves on a per-basin basis. The 

foundation model, on the other hand, is a single model 

trained on data from 16 basins and can perform imputation 

with any input collection of curves. Figures 4 and 5 illustrate 

examples of density curve imputation in the Permian and 

Marcellus Basins, showcasing the model's ability to 

generalize across different geological settings. These results 

indicate that a single generalized model is spatially 

consistent in predicting missing logs along cross-sections, 

demonstrating its adaptability for basin-wide applications. 

 

 
 

 
 

Downstream task: Formation Top Interpretation 

 

We demonstrate a use case where the foundation model can 

be efficiently fine-tuned to a downstream task of formation 

top regression. For example, in Figure 6, we show a 2D 

cross-section of gamma-ray logs sampled from the Midland 

Basin, featuring conventionally interpreted formations 

alongside model-predicted formation tops. The gamma-ray 

cross-section illustrates variations in log response, 

highlighting the spatial consistency of the formation model 

predictions and the model’s ability to replicate expert-level 

interpretation of key formations. In Table 1, we validate 

model performance on the validation dataset for a collection 

of key formations. We found that the residuals are 

characterized by a few large outliers; therefore, we examine 

the trimmed RMSE error (5%) and a median absolute error 

(MedAE) metric to score each formation. We also compute 

the mean absolute percentage error and the R² coefficient, 

showing the number of samples for each formation in the 

validation set. We find that the trained model typically 

provides excellent performance across the scale of the 

Permian Basin. 

 

Next, to demonstrate the utility of an automated tool, we 

replicate the workflow of creating a stratigraphic framework 

across four counties in the Midland Basin (Glasscock, 

Howard, Martin, and Midland). The prompt-based model 

identifies key formation tops in the area of interest by 

interpreting a total of 18,588 wells. The usefulness of the 

promptable model is evident here because not every 

formation in the Permian Basin is also present in the Midland 

Basin. However, since the interpreter understands what 

 

 
Figure 4. Imputation of density well log data for a Williston Basin 

cross-section, (upper section) represents the original measured data, 

and the (lower section) shows the prediction. (inset) Mini map shows 

the location of the cross-section. 

 

 
Figure 5. As in Figure 4, but for a cross-section sampled in the Permian 

basin. 



formations to expect, they can effectively use the prompt 

mechanism accordingly. 

 

The model can infer formation depth, even in the absence of 

well data to support it. Unlike the validation data, we cannot 

be certain that each well has data at the formation location to 

be identified, which may result in outliers in the predictions. 

To improve the predictions, large outliers were removed 

from this collection of tops, and a 2D stratigraphic grid is 

then created for the basin using biharmonic spline 

interpolation. Figure 7 (left) displays the Bone Spring – 

Upper Spraberry and Top Wolfcamp grids derived from the 

prompt-based model, while the right shows the same grid 

derived using 1,255 manually selected tops. With denser 

sampling, the automated tool extracts more detailed 

structural information and requires a fraction of the manual 

effort to build (minutes compared to months). 

 

 
 

This workflow enabled the rapid construction of 

stratigraphic grids (Figure 7), showcasing scalability for 

basin-wide applications and allowing for extra control points 

in areas with limited interpretations, where uncertainty 

increases. By systematically transferring subsurface 

knowledge, the model enhances formation definition, speeds 

up stratigraphic correlation, and improves structural 

mapping for reservoir characterization. 

 

Conclusions 

 

This study presents a foundation model for well log 

interpretation using a ViT-MAE architecture pretrained on 

1.1 million well logs. We demonstrate its effectiveness for 

well log imputation and extend its application to automated 

formation top interpretation using 271,972 manually 

interpreted tops from 44,062 wells. The model exhibits 

expert-level accuracy in identifying structural trends and 

generating stratigraphic grids. Results indicate that 

automation significantly reduces the effort required for 

interpretive tasks compared to traditional methods. 

 

This study outlines a methodology that is scalable to larger 

models trained on enhanced well log and seismic datasets, 

improving multi-modal subsurface characterization. By 

integrating additional geological data and refining the 

automation process, we strive to further enhance prospect 

generation, minimizing manual interpretation efforts while 

preserving geological accuracy. 

 

 
 
Table 1. Summary statistics measuring the model performance in predicting 

formation tops across six key formations, in the validation dataset. 

 

Formation MedAE 

(ft) 

Trim-

RMSE 

(ft) 

MAPE 

(%) 

R² Support 

Rustler 13.0 18.9 1.36% 0.978 3416 

Bone Spring - 

Upper Spraberry 

33.4 54.8 0.83% 0.996 3043 

Lower Spraberry 

Shale 

28.6 41.9 0.31% 0.998 1146 

Top Wolfcamp 40.0 82.7 1.34% 0.992 3747 

Strawn 32.0 65.9 0.68% 0.993 2312 

Devonian 

Carbonate 

39.6 65.2 0.77% 0.996 2194 

 

 
Figure 6. A Gamma-ray cross-section from a 2D well log section in the 

Midland Basin, showing predicted and manually interpreted formation 

tops. Colors represent predicted tops: Rustler (purple), 1st Bone Spring 

- Upper Spraberry (dark blue), Lower Spraberry (green), Top 

Wolfcamp (light blue), Strawn (orange), and Devonian Carbonate 

(red), with manually interpreted tops in black. (Inset) A zoomed-in 

Gamma-ray track view compares automated formation top picks with 

manual interpretations. 

 
Figure 7. Stratigraphic grids for Bone Spring - Upper Spraberry (Top) 

and Top Wolfcamp (Bottom). The left panels show predictions from the 

prompt-based approach, while the right panels display conventional 

hand-picked formation tops for comparison. 


