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Summary 

 

Pre-trained seismic foundation models (SFMs) have shown 

promising performance in seismic interpretation tasks. They 

demonstrate effective generalization across various 

geographic areas. However, the impact of dataset size and 

model complexity on seismic data applications remains 

underexplored. Understanding these relationships is vital for 

optimizing model performance and improving geological 

interpretation accuracy in practical seismic applications. We 

systematically assess the effects of dataset size and model 

complexity on seismic data by training multiple Vision 

Transformer (ViT) variants using the Masked Auto Encoder 

(MAE) technique. We benchmark these models using a few-

shot facies classification task with the established 

LANDMASS1 dataset. Our analysis reveals clear scaling 

metrics, demonstrating performance enhancements with 

larger models and datasets consistent with scaling laws noted 

in other domains. These insights offer actionable guidelines 

for larger 3D models and datasets. 

 

Introduction 

 

Vision Transformer (ViT) models (Dosovitskiy, 2020) are 

the latest advancement in computer vision algorithms. He et 

al. (2022) demonstrate that by utilizing a Masked Auto 

Encoder (MAE) architecture, we can train ViTs in a self-

supervised manner to learn meaningful representations of 

natural images for use in object detection, segmentation, and 

classification tasks with minimal fine-tuning. 

 

Since the original Transformer (Vaswani et al., 2017) was 

introduced, researchers have studied the so-called “Scaling 

Laws” for these models across various domains and 

modalities. Hoffmann et al. (2022) investigated these laws 

in the language modeling domain, while Zhai et al. (2022) 

examined the scaling laws for ViT models with up to 2 

billion parameters. Both studies demonstrate that they 

achieve state-of-the-art results by increasing data size and 

model parameters. Building on that research, Zhai et al. 

(2023) trained a ViT model with 22 billion parameters and 

discussed their engineering challenges. 

 

Lasscock et al. (2024), Gao et al. (2024), and Sheng et al. 

(2025) explored SFMs and downstream task applications. 

These efforts were conducted on a small scale. The largest 

and most data-intensive published SFMs are 3D ViTs trained 

on proprietary data with 632 million and 1.8 billion 

parameter models (Sansal et al., 2025a and 2025b). 

However, whether we are training optimal foundation 

models for given seismic data remains unclear. 

In this study, we explore aspects of scaling laws on SFM by 

training various ViT size variants using the MAE technique 

and benchmarking the performance of facies classification 

tasks with the LANDMASS1 (Alaudah and AlRegib, 2015) 

dataset under a {one, two, five, ten, twenty}-shot linear 

probing setting. This approach helps us understand how 

model and dataset size influence downstream task 

performance. We conduct this study using 2D images (cross-

sections of 3D seismic data) to transfer these insights into 

training 3D ViTs in future research. Conducting a similar 

study in 3D increases each model's training time and, 

consequently, the computational cost.  

 

Dataset 

 

We utilize a large corpus of proprietary data to pre-train our 

variant of Seismic Foundation Models, termed SeisFM. The 

datasets consist of depth-migrated seismic data, covering a 

surface area of approximately 420,000 km² (19 terabytes). 

We sample non-overlapping 224×224 seismic images from 

carefully crafted regions of interest (ROIs) in both inline and 

crossline directions. The ROIs are chosen to minimize or 

avoid empty patches (e.g., water) and uninformative, deep, 

noisy areas of seismic data. In total, our dataset contains 164 

million samples. We decimate the dataset in both inline and 

crossline directions by a fixed factor for dataset size tests. 

Figure 1 illustrates the geographic coverage of the pre-

training data, and Table 1 details the dataset sizes and the 

decimation used to achieve the desired pre-training dataset 

size variants. 

 

 

For the downstream task of facies classification, we utilized 

the LANDMASS1 dataset. This dataset forms part of the 

Large North Sea Dataset of Migrated Aggregated Seismic 

Structures (LANDMASS) and consists of 17,667 small 

seismic image patches (99×99 pixels) from post-migrated 

  

Figure 1:  Map showing worldwide available data (blue) and 

the ones used in SeisFM training (red). 
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seismic volumes. Developed by the Center for Energy and 

Geo Processing (CeGP), it includes four classes: 9,385 

Horizon, 5,140 Chaotic, 1,251 Fault, and 1,891 Salt Dome 

patches. The LANDMASS dataset is derived from the Dutch 

F3 dataset. While the dataset exhibits limitations in 

geographic coverage and ambiguity in the classifications of 

“chaotic” and “fault,” it remains valuable for benchmarking 

our SeisFM models. Figure 2 displays example images. 

 

Table 1:  Datasets and corresponding dataset decimation 

factors in inline and crossline directions. Decimation 

subsamples the original lines by taking every nth line. 

# Samples IL/XL Decimation 

0.1 million 1500 

1 million 160 

10 million 16 

41 million 4 

 

Method 

 

The ViT-MAE method involves training a vision encoder 

model using unlabeled data. It works by masking about 75% 

of the images and using the unmasked patches to reconstruct 

the remaining parts of the image in pixel space. This task is 

quite challenging, allowing the model to learn meaningful 

representations of the data through patch and image features. 

For our experiments, we trained the models listed in Table 

2. We follow the sizing convention of ViT models and pre-

train all models for 1600 epochs. The hyperparameters for 

pre-training are described in Table 3. 

 

For linear probing, we took the pre-trained encoder and froze 

its weights. On top of the encoder, we add a batch 

normalization to the embeddings and then a linear head that 

maps the image class [CLS] token embeddings to four 

classes in the LANDMASS1 dataset. The batch 

normalization helps select stable hyperparameters (e.g., 

learning rate) for various k-shot configurations. For the loss 

function, we utilize simple single-label cross-entropy. 

 

Table 2:  Pre-trained model configurations for scaling 

analysis. Each model configuration is trained with 0.11 

million, 1 million, 10 million, and 41 million dataset size 

variants with 12 models. 
Model 

Name 

Num. 

Param 

Hidden 

Size 

MLP 

Size 

ViT 

Layers 

Atten. 

Heads 

SeisFM-Ti 5.7M 192 768 12 3 

SeisFM-S 21M 384 1536 12 6 

SeisFM-B 85M 768 3072 12 12 

 

We utilized few-shot fine-tuning to measure performance. 

For instance, one-shot means we take one example from 

each class (4 images) and train the head. Twenty-shot means 

we take 80 total images for fine-tuning the classification 

head. As mentioned earlier, the LANDMASS1 dataset has 

over 17 thousand samples. We first divide the dataset into 

training (3%), validation (10%), and testing (87%) subsets. 

Then we sample the training split for {1, 2, 5, 10, 20}-shot 

datasets. The validation and testing datasets are kept 

consistent between every model evaluation. Depending on 

the number of examples (N-shot) in fine-tuning, we adjust 

the number of epochs to between 100 and 150 and the batch 

size to between 4 and 16. The rest of the hyperparameters 

are given in Table 4. We adjust the learning rate and batch 

size for stable training based on the number of examples. 

 

Table 3:  Pre-training setting. 

config value 

optimizer AdamW 

base learning rate 1e-4 

weight decay 0.05 

batch size 2048 

learning rate schedule cosine 

warmup epochs 20 

augmentation Flip, RandomResizedCrop 

 

Table 4:  Linear probing setting. 

config value 

optimizer AdamW 

base learning rate Varies ~ [0.0005, 0.001] 

weight decay 0 

batch size varies ~ [2, 16] 

learning rate schedule cosine 

warmup epochs Varies ~ [8, 14] 

augmentation Flip, RandomResizedCrop 

 

 
Figure 2:  Example tiles and labels from LANDMASS 1 

dataset for all four classes in columns. 



ViT scaling analysis on seismic: model-data trade-offs 

 

Our performance metrics for linear probing are the F1 score 

and Top-1 Error Rate, calculated on LANDMASS1 test data 

facies predictions achieved through the few-shot fine-tuning 

methodology described above. We use positional encoding 

interpolation to enable training on 99×99 images with a ViT 

encoder that was pre-trained on 224×224 data patches (Chen 

et al., 2023). 

 

Results 

 

Similar to other domains, we find that increasing both the 

dataset size and the model parameter count (and thus the 

computational requirements) enhances the few-shot 

performance of the model. Figure 3 illustrates two metrics 

used for benchmarking: the F1 score (which measures how 

well a model predicts classes, higher=better) and the Top-1 

Error Rate (the percentage of the model incorrectly selecting 

the top answer, lower=better). We conducted each 

experiment seven times to minimize sensitivity to model 

initialization and data sampling to reduce scoring sensitivity 

to data sampling and training dynamics. The blue-shaded 

areas depict the distributions for the SeisFM-B-1M model for 

all experiments. As expected, performance improves with 

more examples per class. Nonetheless, the one-shot 

performance is impressive. The broader distribution (in blue) 

for one- and two-shot linear probing suggests that the 

performance of the supervised classification head depends 

on the samples it received during training and is more 

sensitive to the quality of examples. Small parameter counts 

and less training data make the models more prone to this 

issue.  

 

 

We also benchmarked the effect of model size using the 

other SeisFM variants with the same method. Figure 4 

presents a selection of results alongside the F1 and Top-1 

Error Rate. The color change represents model size (from 

blue: small to yellow: large). The size of the markers reflects 

 
Figure 3:  Few-shot classification F1 score (top) and Top-1 

Error Rate (bottom) and their distribution across five runs. 

In this chart, we keep the model size at SeisFM-B-1M. 

 
Figure 4:  Few-shot classification performance (median of 

runs) with various model and dataset size configurations. 
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the amount of data used in pre-training each specific model 

highlighted in the legend. We notice that few-shot 

classification performance improves as both the model and 

dataset sizes increase. Evidence suggests that the models can 

scale further with additional data and larger sizes. 

 

 

To validate the per-class results, the confusion matrices 

(which show how accurately a model predicts facies, both 

correctly and incorrectly) for different model and data 

combinations are presented in Figure 5. To address the class 

imbalance in the LANDMASS1 dataset, the metrics from the 

few-shot runs were normalized based on the true labels. This 

normalization is essential for averaging the results across 

various few-shot samples and creating aggregated confusion 

matrices. The results suggest that increasing the dataset and 

model sizes positively impacts performance. 

 

Figure 6 shows good and bad predictions in the testing 

dataset. The predictions are from the largest model (SeisFM-

B-41M). Bad examples are rare (F1: 0.998) and explainable 

(e.g., class mixtures or faults/chaotic being similar).  

 

Conclusions 

 

We have demonstrated that the size of the model and dataset 

are crucial for scaling seismic foundation models (SFMs). 

This was illustrated through systematic training and 

evaluation of pre-trained SeisFM models using the Masked 

AutoEncoder (MAE) technique and by benchmarking their 

linear probing performance on a facies classification task 

with the LANDMASS1 dataset. Our findings validate that 

the "scaling laws" observed in other fields, such as language 

modeling and computer vision, also apply to foundation 

models trained on seismic data. 

 

The SeisFM models achieved notable effectiveness even in 

one-shot classification settings, with the most-scaled model 

(SeisFM-B trained on 41M samples) reaching an impressive 

F1 score of 0.998. This capability highlights a valuable use 

case, as limited labeled data can generate additional labels, 

which, upon human validation, can subsequently be utilized 

for further supervised training. However, we observed 

increased sensitivity to the quality of samples chosen during 

one-shot training, evidenced by broader error distributions 

across multiple runs. Adopting strategies involving five-shot 

learning or higher significantly mitigates this sensitivity, 

yielding consistently high performance. Therefore, we 

recommend an iterative approach to label curation, 

progressively enhancing training data quality through 

repeated cycles of model inference and human validation. 

 

 

Our analysis, supported by Figure 4, shows consistent 

performance gains up to 41M samples and larger models, 

with no clear evidence of saturation, suggesting that further 

improvements are attainable with increased scale. This 

finding closely aligns with scaling laws observed in other 

domains. While these conclusions directly apply to our 

current 2D seismic analysis, they emphasize the significance 

of ongoing investment in larger-scale datasets and advanced 

model architectures to drive future innovations in artificial 

intelligence for seismic interpretation. Future research 

should focus on extending these insights to 3D seismic data 

contexts to confirm and refine these scaling trends, 

potentially providing more profound and comprehensive 

geological insights. 
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Figure 5:  Confusion matrix for facies classification on test 

data. The model size increases top-to-bottom, and the dataset 

size increases left-to-right.  

 
Figure 6:  Correct (a) and erroneous (b) results in test data.  


