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Summary 
 
Extracting structured metadata from unstructured SEG-Y 
text headers is essential for organizing and retrieving seismic 
data. We develop and assess an LLM-powered API that 
organizes unstructured SEG-Y text header data using 
predefined JSON schemas. Across 21 datasets, our method 
achieves a semantic accuracy of 90.33% and a strict (worst-
case) accuracy of 79.45%, demonstrating its effectiveness 
for scalable data extraction. We explore areas for 
improvement, including domain knowledge integration and 
model enhancements, to further optimize structured text 
extraction. 
 
Introduction 
 
Extracting structured information from unstructured text 
remains a fundamental challenge in data processing 
pipelines. Traditional rule-based approaches, such as parsers 
based on regular expressions, often struggle with variability 
in text formats, leading to inconsistencies and data loss. 
Recent advances in Large Language Models (LLMs) have 
opened new possibilities for utilizing contextual 
understanding to enhance extraction performance (Moundas 
et al. 2024). 

A significant application of this technology is the curation of 
seismic data (SEG-Y) files. These files contain a textual 
header (typically encoded as EBCDIC) that lacks enforced 
standardization, except for the requirement that the header 
must consist of 40 lines, each with 80 characters. The header 
text typically includes metadata pertinent to the seismic 
dataset, such as the seismic product name, survey date, and 
coordinate reference system. Traditional extraction methods 
necessitate manual effort or inflexible rule-based pipelines, 
both of which are inefficient and prone to error. 

We present a workflow API that utilizes GPT-4o (OpenAI 
2023) to extract structured metadata from unstructured 
seismic text headers. Our API formats header text into 
structured JSON using a predefined schema and enforces 
consistency through schema constraints. We evaluate 
extraction accuracy using a golden dataset consisting of 
human-curated metadata from 21 seismic headers. Our 
contributions are as follows: 

• We develop an LLM-powered API for structured 
extraction from seismic EBCDIC headers. 

• We define a rigorous evaluation framework based on 
strict and semantic accuracy metrics. 

• We analyze performance across 21 datasets and 
discuss improvements for future iterations. 

Method 
 
The API was built using Python, with core technologies 
including FastAPI, Pydantic, and the OpenAI API library. 
Unstructured text headers were processed within a QA 
pipeline. The API request sends header text and a dataset 
type (e.g., 3D pre-stack data), which determines the expected 
structure of the extracted output. This dataset type 
corresponds to a predefined JSON schema via Pydantic, 
ensuring structured extraction. To enforce consistency, the 
Pydantic schema is embedded directly into the LLM prompt, 
guiding GPT-4o to generate structured JSON responses. 
This structured approach prevents data inconsistencies and 
ensures that extracted metadata meets expected field 
constraints. For example, fields such as geodetic datum are 
validated against known coordinate reference systems, while 
numeric values are constrained within predefined data types 
(e.g., float, integer). 
  
Evaluation and Metrics 
 
To assess model variability, 21 seismic text headers with 
human-curated text extractions were used as a golden 
dataset. Each header was evaluated 10 times, and extraction 
results were analyzed using two accuracy metrics. 
 
Strict Accuracy: Measures exact matches between extracted 
fields and expected outputs. Minor variations (e.g., "Meters" 
vs. "meters") result in mismatches, making this a rigid 
evaluation metric. 
 
Semantic Accuracy: Uses an LLM to assess conceptual 
equivalence in text-based fields while enforcing exact 
comparisons for numeric fields. For example, “NAD83” and 
“North American Datum 1983” are considered semantically 
equivalent and are correct. 
 
By combining these two metrics, we obtain lower and upper 
bounds for the true accuracy of the extraction API. 
 
Examples 
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C 1 CLIENT: ROCKY MOUNTAIN OILFIELD TESTING CENTER                               
C 2 PROJECT: NAVAL PETROLEUM RESERVE #3 (TEAPOT DOME); 
NATRONA COUNTY, WYOMING   
C 3 LINE: 3D                                                                     
C 4                                                                              
C 5 THIS IS THE FILTERED POST STACK MIGRATION                                    
C 6                                                                              
C 7 INLINE 1, XLINE 1: X COORDINATE: 788937  Y COORDINATE: 938845              
C 8 INLINE 1, XLINE 188:X COORDINATE: 809501 Y COORDINATE: 939333              
C 9 INLINE 188, XLINE 1: X COORDINATE: 788039  Y COORDINATE: 976674              
C10 INLINE NUMBER:    MIN: 1  MAX: 345  TOTAL: 345                               
C11 CROSSLINE NUMBER: MIN: 1  MAX: 188  TOTAL: 188                               
C12 TOTAL NUMBER OF CDPS: 64860   BIN DIMENSION: 110\' X 110\'  
C13                                                                              
...                                                             
C18                                                                              
C19 GENERAL SEGY INFORMATION                                                     
C20 RECORD LENGHT (MS): 3000                                                     
C21 SAMPLE RATE (MS): 2.0                                                        
C22 DATA FORMAT: 4 BYTE IBM FLOATING POINT                                       
C23 BYTES  13- 16: CROSSLINE NUMBER (TRACE)                                      
C24 BYTES  17- 20: INLINE NUMBER (LINE)                                          
C25 BYTES  81- 84: CDP_X COORD                                                   
C26 BYTES  85- 88: CDP_Y COORD                                                   
C27 BYTES 181-184: INLINE NUMBER (LINE)                                          
C28 BYTES 185-188: CROSSLINE NUMBER (TRACE)                                      
C29 BYTES 189-192: CDP_X COORD                                                   
C30 BYTES 193-196: CDP_Y COORD                                                   
C31                                                                              
… 
C35                                                                              
C36 Processed by: Excel Geophysical Services, Inc.                               
C37               8301 East Prentice Ave. Ste. 402                               
C38               Englewood, Colorado 80111                                      
C39               (voice) 303.694.9629 (fax) 303.771.1646                        
C40 END EBCDIC                

Figure 1: An example of a seismic EBCDIC header file 
 

C 1 SEGY OUTPUT FROM Petrel 2021.4 Wednesday, April 19 2023 09:18:55             
C 2 Name: WSA-320 Type: 2D seismic                                               
C 3                                                                              
C 4 First CDP: 8.000000 Last CDP: 16160.000000                                   
C 5 First SP:  1.000000 Last SP:  803.000000                                     
C 6 CRS: UTM83-5 ("MENTOR:UTM83-5:NAD83 UTM, Zone 5 North, Meter") 
NSIS,502402e  
C 7 X min: 279550.79 max: 401465.89 delta: 121915.10                             
C 8 Y min: 6147062.65 max: 6307028.10 delta: 159965.45                           
C 9 Time min: -6298.00 max: 2.00 delta: 6300.00                                  
C10 Lat min: ~55.42010880 max: ~56.89648136 delta: ~1.47637257                   
C11 Long min: ~-156.61579948 max: ~-154.55829079 delta: ~2.05750869              
C12 Trace min: -6296.00 max: 0.00 delta: 6296.00                                 
C13 Seismic (template) min: ~-29577.00 max: ~30495.00 delta: ~60072.00           
C14 Amplitude (data) min: ~-29577.00 max: ~30495.00 delta: ~60072.00             
C15 Trace sample format: IEEE floating point                                     
C16 Coordinate scale factor: 100.00000                                           
C17                                                                              
C18 Binary header locations:                                                     
C19 Sample interval             : bytes 17-18                                    
C20 Number of samples per trace : bytes 21-22                                    
C21 Trace date format           : bytes 25-26                                    
C22                                                                              
C23 Trace header locations:                                                      
C24 Inline number               : bytes 5-8                                      
C25 SP Number                   : bytes 17-20                                    
C26 CDP number                  : bytes 21-24                                    
C27 Coordinate scale factor     : bytes 71-72                                    
C28 X coordinate                : bytes 73-76                                    
C29 Y coordinate                : bytes 77-80                                    
C30 Trace start time/depth      : bytes 109-110                                  
C31 Number of samples per trace : bytes 115-116                                  
C32 Sample interval             : bytes 117-118                                  
C33                                                                              
… 
C39                                                                              
C40 END EBCDIC                                                                   

Figure 2: A second example of a seismic EBCDIC header 
file to illustrate the difference in structure. 
 
 

Above are two examples of public domain seismic text 
headers (Fig. 1 & 2). The texts have been edited for clarity. 
They illustrate the differences in formatting, structure, and 
terminology. The API's extraction schema is displayed in 
Figure 3. Every field the API will try to extract can have a 
description and a data type (e.g., integer), which the LLM 
will consider when performing the extraction. Additional 
constraints and information can be injected in the Pydantic 
class if a field is more complicated or requires additional 
domain knowledge. Note that for the first iteration of this 
API, all the descriptions are sparse and provide little 
additional domain knowledge for the LLM to utilize. 
 

 
Figure 3: A conceptual model of one of the extraction 
schemas in the API 
 
Lastly, we have example extraction outputs (Figures 4 & 5) 
derived from the unstructured text in Figures 1 and 2. The 
API will not try to fill in missing fields from the header file. 
However, note that the API does not simply pull text from 
the header file. For example, in Figure 4, the API deduced 
that the grid units were in feet, but that is not strictly 
specified anywhere in the header file; rather, the API most 
likely inferred this from the bin dimension being 110’ x 
110’. 
 
Both examples show that extracting these structured fields 
from a human perspective is not particularly difficult, but the 
time-consuming nature of reading through the header file, as 
well as the large number of header files to process, makes 
this a good use case for the LLM extraction API. 
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{ 
        "clientName": "ROCKY MOUNTAIN OILFIELD TESTING CENTER", 
        "projectName": "NAVAL PETROLEUM RESERVE #3 (TEAPOT DOME); 
NATRONA COUNTY, WYOMING", 
        "projectId": null, 
        "projectCopyright": null, 
        "seismicProductId": null, 
        "seismicProductName": null, 
        "surveyGeographicalArea": null, 
        "geodeticDatum": null, 
        "referenceEllipsoid": null, 
        "mapProjection": null, 
        "gridUnits": "feet", 
        "inlineRange": { 
            "start": 1, 
            "stop": 345 
        }, 
        "crosslineRange": { 
            "start": 1, 
            "stop": 188 
        }, 
        "inlineIncrement": 1, 
        "crosslineIncrement": 1, 
        "inlineSpacing": 110.0, 
        "crosslineSpacing": 110.0, 
        "cornerPoints": { 
            "corners": [ 
                { 
                    "x": 788937.0, 
                    "y": 938845.0, 
                    "inline": 1, 
                    "crossline": 1 
                }, 
                { 
                    "x": 809501.0, 
                    "y": 939333.0, 
                    "inline": 1, 
                    "crossline": 188 
                }, 
                { 
                    "x": 788039.0, 
                    "y": 976674.0, 
                    "inline": 188, 
                    "crossline": 1 
                } 
            ] 
        } 
    } 

Figure 4: The extracted output from the header in Figure 1  
 

{ 
        "clientName": null, 
        "projectName": "WSA-320", 
        "projectId": null, 
        "projectCopyright": null, 
        "seismicProductId": null, 
        "seismicProductName": null, 
        "surveyGeographicalArea": null, 
        "geodeticDatum": "NAD83", 
        "referenceEllipsoid": null, 
        "mapProjection": "UTM, Zone 5 North", 
        "gridUnits": "Meter", 
        "lineNo": "WSA-320", 
        "shotpointRange": { 
            "start": 1, 
            "stop": 803 
        }, 
        "cdpRange": { 
            "start": 8, 
            "stop": 16160 
        }, 
        "cdpIncrement": null 
    } 

Figure 5: The extracted output from the header in Figure 2 
 
 
 
 
 

Results 
 
Across 210 API calls (21 headers × 10 runs each), the model 
attained a strict accuracy of 79.45% and a semantic accuracy 
of 90.33%. To date, the API has been utilized to augment 
human-performed quality assurance on over 25,000 SEG-Y 
files. 

Accuracy Distribution Analysis 
 
Figure 6 shows the histogram of accuracy results across all 
samples. The distribution is left-skewed, indicating that most 
samples yielded high accuracy, while a few outliers 
contributed to lower average accuracy. These lower-
performing samples often exhibited inconsistent text 
formatting or required domain-specific knowledge beyond 
the LLM’s pretraining. 

 
Figure 6: Histogram of accuracy across 210 outputs (21 

samples, 10 extracts per sample) for both strict accuracy (in 
blue) and semantic accuracy (in orange). 

File-Specific Extraction Performance 
 
We also observed a strong inverse relationship between 
extraction variability and accuracy, as illustrated in Figure 
7—fields with higher standard deviation showed lower 
semantic accuracy. This indicates that increasing schema 
constraints and integrating domain-specific guidance in the 
API prompt could improve extraction consistency. 
Furthermore, the extraction variability over multiple runs 
could serve as a confidence indicator.  
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Figure 7: The average and standard deviation of the 
semantic accuracy of extraction for each header file in the 
test dataset, sorted by the standard deviation column 
(scaled down by a factor of 0.5 for readability). 

 
Figure 8: Extract fields sorted by their semantic accuracy. 

Field-Specific Extraction Performance 
 
Figure 7 presents a breakdown of extracted fields sorted by 
their semantic accuracy. Fields such as project ID, client 
name, and geodetic datum performed well, achieving over 
90% accuracy. Other fields that are typically distinct in the 
header text, like the corner points (which are usually in a 
tabular format that stands out from the rest of the header 
file), are consistently extracted accurately. In contrast, fields 
that require more domain knowledge to distinguish, such as 
seismic product name and project name, exhibit greater 
extraction difficulty, with semantic accuracy rates of 60% 
and 80%, respectively.  

Discussion 
 
Key Observations and Future Improvements 
 
This study highlights the potential of LLM-powered 
structured extraction but also identifies several areas for 
improvement: 
  

1. Refining Schema Definitions: The current JSON 
schema definitions lack detailed domain knowledge. 
Expanding field descriptions and adding contextual 
hints (e.g., defining expected units or formats) could 
improve extraction consistency. 

2. Few-Shot Prompting (Brown et al, 2020): The API 
could integrate historical extractions as examples 
within the prompt, guiding the model towards more 
accurate outputs. This would be particularly beneficial 
for fields with ambiguous formatting. 

3. Multi-Pass Extraction with Consensus Aggregation: 
Given the probabilistic nature of LLM outputs, running 
multiple extractions per header and selecting the most 
frequently generated value could enhance reliability. 

 
Conclusions 
 
LLMs provide a scalable, adaptable, and efficient solution 
for extracting structured data from unstructured text. Our 
study demonstrates that a pre-trained LLM-powered API can 
effectively extract key metadata fields from seismic textual 
headers with high accuracy. By evaluating performance 
across 21 datasets, we highlight the strengths and challenges 
of applying LLMs to structured extraction tasks. While 
current performance is promising, we see several 
opportunities for improvement, including schema 
refinement, few-shot prompting, and multi-pass extraction. 
Future research will examine these enhancements to increase 
extraction accuracy and consistency further.  


