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Summary 

 

Ultra-High Resolution Seismic data (UHRS) are used for 

exploration activities like wind farm characterization and 

development. Ghost reflections from the sea surface 

contaminate primaries and, therefore, should be attenuated 

in the early stage of processing. Due to the high variability 

of the sea state, the ghost attenuation of high-resolution data 

can be quite challenging. We present the use of a deep 

learning network to simultaneously attenuate both source 

and receiver side ghosts. This network is trained with the 

ground truth data obtained from an inversion-based 

deghosting. We show how an autocorrelation can be 

imbedded in the loss function to help it cope with any 

residual ghost energy remaining in the training data, if 

needed. Using a field data example, we demonstrate that the 

performance of the trained network on unseen data is robust, 

and the trained network can be used for both fast track and 

full integrity processing. Moreover, deghosting of seismic 

data using a deep learning network can significantly reduce 

both computation and turn-around times.  

 

Introduction 

 

3D Ultra-High Resolution Seismic (UHRS) data provide 

high-resolution 3D images together with additional 

attributes including velocity fields, diffraction images, and 

physical characteristics of the subsurface. Particularly, 

shallow subsurface images are widely used for wind farm 

site characterization. In offshore UHRS survey, seismic 

sources (e.g., sparkers, boomers) and receivers 

(hydrophones) are towed below the sea surface. Energy 

emitted from the seismic sources travels through the water 

and subsurface. Part of the energy is reflected upwards from 

the interfaces of the geological layers. There is also an 

undesired and very strong downward reflection from the sea 

surface called the ghost. Ghost reflections occur on both the 

receiver and source side. With every reflection, polarity of 

the energy changes. In comparison to conventional seismic 

surveys, UHRS surveys involve receivers towed at 

shallower depths (e.g. 3m) and sources are towed just below 

the sea surface (e.g. 0.5 m). To capture finer details of the 

subsurface, UHRS surveys have very fine temporal and 

spatial sampling intervals. As the sea state continuously 

varies during the acquisition, the actual source and receiver 

depths continuously fluctuate from the nominal depths, 

which causes a high variability in the ghost arrival times 

relative to the original reflection. Since receivers are towed 

deeper than the sources, they naturally exhibit much higher 

variability. 

 

Geophysicists have developed various processing-based 

methods to attenuate the ghost and improve imaging results. 

Traditional deghosting techniques typically rely on plane-

wave decomposition and are applied in domains such as the 

f-k domain (Day et al., 2013) or the τ-p domain 

(Masoomzadeh and Woodburn, 2013). However, these 

deghosting techniques often struggle to perform well on 

UHRS data due to the high variability of the source and 

receiver depths where the precise depths are often unknown 

(Provenzano et al., 2020). Inversion-based deghosting 

methods, such as the approach proposed by Bekara et al. 

(2024), estimate the depths and suppress ghost reflections 

using deconvolution in the τ-p domain. While effective, 

these methods require significant computational resources 

and precise parameter settings. Inaccurate source and 

receiver depth estimation can lead to suboptimal ghost 

removal. 

 

Recent advancements in Deep Learning (DL) offer a faster 

and automated alternative for UHRS deghosting (e.g. 

Farmani et al. 2024, Van Borselen and Vasconcelos 2024, 

Farmani et al. 2025). Van Borselen and Vasconcelos (2024) 

showed on synthetic data with a source depth of 0.5 m and 

receiver depths in the range 0.3-1.1 m that a trained DL 

network can perform good source and receiver deghosting 

without any knowledge of the actual depth. Farmani et al. 

(2024) showed on real field data that a trained DL network 

can perform good receiver deghosting provided that the 

receivers’ depth variation for the unseen data is close to the 

range of receiver depths of training data. Later, Farmani et 

al. (2025) showed on real field data that the same network 

can be used to simultaneously perform both source and 

receiver deghosting with the quality acceptable for both fast 

track and full integrity processing. A majority of the studies 

mentioned above rely on supervised training, meaning that 

ground truth data should be provided to train the network. 

However, preparing ground truth data can be challenging as 

residual ghosts may be present in the data due to imperfect 

parameterization or very high variability of the ghost. 

Therefore, it would be desired to partially ease the 

requirement of having perfect ground truth data for training 

the network.  

 

To address this challenge, we propose using a custom loss 

function that consists of two terms: the Mean Absolute Error 

(MAE) - commonly used in conventional DL methods, and 

an autocorrelation penalty term based on the autocorrelation 

function (ACF). The autocorrelation penalty term can 

effectively suppress unwanted ghost patterns, reducing the 

DL model’s dependence on the ground truth 

parameterization. By penalizing residual ghost patterns 
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during the training, the model produces cleaner outputs and 

achieves superior deghosting results. This approach 

maintains the speed and automation benefits of DL while 

improving robustness for real field data. Results demonstrate 

that our autocorrelation loss-based DL method (ACL-DL) 

can outperform conventional DL methods when there is 

residual ghost energy in the training data. 

 

Method 

 

First, a small portion of the data in the acquired survey (e.g. 

one early sequence) is fully deghosted using the method 

proposed by Bekara et al. (2024). Although a perfect 

deghosting of the training data is ideal, a small amount of 

residual ghost is considered acceptable in order to reduce the 

testing time. A perfect parameterization for each shot gather 

is time-consuming and difficult to achieve. Then, we train a 

convolutional neural network called real image denoising 

network (RIDNet) (Anwar and Barnes, 2019) to reproduce 

the fully deghosted output. RIDNet is a modular network 

comprising three main modules: feature extraction, feature 

learning residual module, and reconstruction. It has a 

sequence of modules called enhancement attention modules 

(EAM) which are sequentially connected to each other. Our 

RIDNet uses 4 EAM boxes. Compared to many other DL 

networks, RIDNet is a relatively small network with fewer 

parameters to learn. Therefore, training the model neither 

requires large hardware resources nor a large amount of 

training data. It is important that the training data 

encompasses the expected variation in source and receiver 

depths. We have observed that the network can handle small 

deviations of source and receiver depths from the training 

data. However, as the deviation increases, the network 

performance becomes more and more suboptimal. 

 

To enable the model to minimize ghost residuals, we 

designed a custom loss function by incorporating an 

autocorrelation penalty term informed by expected receiver 

ghost periods. We compute the ghost period for each trace 

of the input data based on the estimated receiver depth and 

acquisition geometry with the following equation: 

  𝜏 =  
2 𝑟𝑑𝑒𝑝𝑡ℎ cos(𝛼)

𝑣
                                      (1)  

Here, 𝑟𝑑𝑒𝑝𝑡ℎ is the estimated receiver depth, 𝑣 is the water 

velocity, and 𝛼 is the angle of incidence. These ghost periods 

indicate the expected arrival times of ghost reflections in the 

input data, allowing us to generate masks 𝑚 that highlight 

regions affected by ghost patterns. Let 𝑓𝜃  represent the 

RIDNet network parameterized by 𝜃, and 𝑥 be the input 

seismic data containing ghost energy. During the training 

stage, input patches are processed by the network to produce 

a predicted ghost-free signal �̂� = 𝑓𝜃(𝑥) . Our custom loss 

function ℒ is defined as the sum of the MAE and an 

autocorrelation penalty term: 

ℒ =  
1

𝑁
∑ |𝑠𝑖 − �̂�𝑖|𝑁

1 + 𝜆 
1

𝑁
∑ |�̂�𝑖

𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟  . 𝑚𝑖|𝑁
1            (2)  

where: 𝑠 is the ground truth signal, 𝑁 is the number of data 

points, �̂�𝑖
𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟 = ACF(�̂�) is the autocorrelation of the 

predicted signal, 𝑚𝑖 is a sample mask based on ghost sample 

locations, and 𝜆 is a scaling factor controlling the 

contribution of the autocorrelation penalty term. The first 

MAE term measures the errors between the ground truth and 

the predicted patches. However, if the ground truth is 

obtained by using a parameterization that does not fully 

attenuate ghosts in all shot gathers, for example due to 

ambiguity in receiver depths, the network may learn to retain 

residual ghost energy. To address this issue, the second term 

of our loss function applies an autocorrelation penalty to the 

predicted patches, weighted by the ghost arrival times. High 

autocorrelation in these regions indicates the presence of 

ghost residuals. By penalizing this autocorrelation, the 

model learns to suppress ghost residuals effectively. This 

approach allows the model to reduce ghost patterns 

independently of the ground truth parameterization, as the 

second term of the loss function (equation 2) does not rely 

on ground truth data. This combination of the MAE term, 

which ensures signal accuracy, with the autocorrelation 

penalty term, which targets ghost suppression, maintains a 

balance between ghost removal and signal preservation. 

During the training, the network parameters are updated via 

gradient descent, enhancing RIDNet's ability to outperform 

conventional loss methods in ghost removal. Finally, the 

trained RIDNet network is used to quickly and automatically 

attenuate the source and receiver ghost from all sequences in 

the survey.  

 

Example 

 

The data used for this study are from a 3D UHRS survey 

acquired in 2024. The survey was conducted using 10 

streamers, each 150 m long. The distance between receivers 

and streamers were 3.125 m and 12.5 m respectively. Four 

dual-stacked sparkers were used as seismic sources. The 

nominal receiver depth was 3 m, and source depth was 0.45 

m. Temporal sampling was 0.125 milliseconds 

corresponding to a Nyquist frequency of 4 kHz. We first 

chose one of the early acquired sequences. The chosen 

sequence was fully deghosted using the inversion-based 

method for generating the desired output for supervised 

training. There was occasional residual receiver ghost left in 

the ground truth data used to train the models. Apart from 

excluding the direct arrival, no additional pre-processing 

was applied to prepare the data for the training. The RIDNet 

network was then trained to learn the full deghosting task 

once with MAE loss function and then, with ACL-DL loss 

function. Both trained networks were then ready to remove 

the source and receiver ghost from the other sequences in the 

survey. 

 

Figure 1 shows 2D QC stacks from an unseen sequence by 

the network for an outer cable. There is a strong reflector 
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right below the seabed which makes the deghosting task 

quite challenging. High variability of the receiver ghost is 

visible in Figure 1a. The inversion-based method was 

applied with the same parametrization used for the training. 

It effectively attenuates both source and receiver ghosts (1b). 

However, it leaves more residual ghost of the seabed and the 

reflector right below it than the RIDNet models particularly 

at the left side of the image, pointed by the arrows. In 

addition, this method has slightly damaged the primary 

reflector highlighted by oval. RIDNet with MAE loss more 

successfully attenuates the ghost and better preserves the 

primary reflector mentioned above (1c). However, residual 

ghost from the last strong reflector is more visible than the 

other two methods. RIDNet with ACL-DL loss shows the 

best balance in primary preservation and the ghost 

attenuation (1d). Figure 2 shows 2D QC stacks of an inner 

cable from the same sequence. Inversion- based deghosting 

attenuates most of the ghost energy but leaves a weak 

amplitude of the last strong reflector pointed by arrows (2b). 

Similar partial damage to the primary reflector highlighted 

by oval is seen in figure 2b. RIDNet with MAE loss leaves 

more residual ghost of the strong reflector right below the 

seabed as well as the last strong reflector (2c). RIDNet with 

ACL-DL loss shows again the best performance with 

persevering the primaries and also effectively attenuating the 

ghost of the reflector right below the seabed (2d). Weak 

residual ghost of the last strong reflector is still visible in the 

data after the deghosting (2d). Figure 3 shows amplitude 

spectra of all QC stacks in Figures 1 and 2. In frequency 

domain, amplitude of all three methods produce comparable 

results. However, RIDNet with MAE loss shows slightly 

lower amplitude for frequencies below 500 Hz. This can also 

be visually observed by looking at reflector around 70 

milliseconds in Figures 1 and 2.   

Conclusions 

 

We present UHRS source and receiver deghosting using a 

convolutional neural network called RIDNet. The RIDNet 

model was trained using data deghosted by a data-driven 

inversion-based deghosting method. We also showed that 

with a custom loss function incorporating an autocorrelation 

penalty term, we can train a DL network with ground truth 

data containing a small amount of residual receiver ghost 

and still teach the network to effectively attenuate the ghost 

of unseen data. When perfect training data is not available, 

this method effectively suppresses ghost residuals and 

reduces reliance on a precise ground truth parametrization. 

Results show that ACL-DL maintains the speed of DL while 

delivering cleaner outputs, outperforming conventional DL 

loss methods across various conditions. Our methodology 

 

Figure 1: Data example of an outter cable from an unseen sequence by the RIDNet network. 2D QC stack a) before deghosting, b) after inverstion 
based deghosting, c) after RIDNet with MAE loss deghosting, and d) after RIDNet with ACL-DL loss deghosting. Arrows below the seabed point 

to the ghosts of the seabed and reflector right below it. Deeper arrows point to the ghost of the last strong reflector. RIDNet with ACL-DL loss 

deghosting shows the best consistency and performance. Ovals point to a primary reflector better preserved by RIDNet models.   
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has been applied to both fast track and full integrity 

processing with successful performance. The advantages of 

using this method include removing the need for user 

parametrization, relaxing the need for perfect ground truth 

data, maintaining consistency in the performance and 

significantly reducing both hardware usage and turn-around. 
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Figure 2: Data example of an inner cable from an unseen sequence by the RIDNet network. 2D QC stack a) before deghosting, b) after inverstion 

based deghosting, c) after RIDNet with MAE loss deghosting, and d) after RIDNet with ACL-DL loss deghosting. Arrows below the seabed point 
to the ghosts of the seabed and reflector right below it. Deeper arrows point to the ghost of the last strong reflector. RIDNet with ACL-DL loss 

deghosting shows the best consistency and performance. Ovals point to a primary reflector better preserved by RIDNet models.   

 

Figure 3: Amplitude spectra of a) outer cable, and b) inner cable, both before and after full deghost using an inversion-based method and two DL 
methods. This comparison shows that the quality of our DL output is comparable with the inversion-based method. 


