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Abstract 

 

This study presents a novel workflow for generating realistic 

3D Earth representations tailored to machine learning (ML)-

based velocity estimation tasks. By leveraging a 

comprehensive global dataset of 60,090 offshore wells 

integrated with seismic structural attributes, we address 

critical limitations in current synthetic datasets, which often 

lack representative geological complexity. Our methodology 

features three significant innovations: (1) An ML-driven 

approach that robustly predicts missing shear wave sonic 

logs, substantially broadening training data coverage and 

quantifying associated uncertainties; (2) Structural modeling 

through predictive painting that accurately extracts relative 

geological time from seismic data, ensuring geological 

consistency; and (3) A hybrid augmentation technique that 

combines pseudo-synthetic earth models with realistic salt 

masks and detailed lithological trends, significantly 

enhancing geological realism. The resulting training datasets 

effectively capture the diversity and complexity encountered 

in real-world scenarios, laying the groundwork for 

improving the robustness, accuracy, and generalizability of 

ML models used in full waveform inversion (FWI) and 

tomographic velocity modeling. 

 

Introduction 

 

Recent advances in machine learning can potentially 

transform geophysical workflows, particularly in velocity 

model building. ML-based tomographic updates (Crawley et 

al., 2024) demonstrate enhanced velocity estimation through 

learned data relationships, while diffusion-based approaches 

(Taufik et al., 2024) show promise for regularizing full 

waveform inversion (FWI). However, these techniques are 

critically dependent on training data that adequately 

represent real-world geological variability-a requirement not 

met by current synthetic datasets like OpenFWI (Deng et al., 

2022), which lack realistic a priori earth model distributions. 

We address this limitation through three interconnected 

innovations: First, we extend the ARLAS methodology 

(Gonzalez et al., 2023) to predict shear wave logs (including 

associated uncertainties) across a global well dataset, 

effectively addressing data scarcity issues. Second, we 

integrate seismic structural information using predictive 

painting (Fomel, 2010) to create geologically consistent 3D 

models. Third, we develop a hybrid augmentation approach 

that combines real salt masks with pseudo-synthetic 

structural models, overcoming challenges in complex 

geological settings. 

This paper first details our machine-learning framework for 

log prediction and uncertainty quantification. We then 

present our seismic-to-model conversion workflow using 

relative geological time attributes. Finally, we demonstrate 

how synthetic model augmentation enhances training data 

diversity while maintaining geological realism. The 

resulting methodology provides a robust foundation for ML-

based velocity estimation in data-rich and challenging 

subsurface environments. 

 

Figure 1 Global distribution of training (blue) and validation (red) wells. 
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Method - Wells: An ML model that predicts missing 

shear wave sonic logs 

 

Our dataset comprises 60,090 offshore wells from various 

basins worldwide. The locations of the wells are illustrated 

in Figure 1. The dataset features an uneven distribution 

across global regions, with the Gulf of Mexico representing 

the majority (88%). While nearly half of the wells have 

acoustic measurements, only 5% include shear wave 

information. The lack of shear wave data highlights the 

necessity for reliable prediction methods. We use 75% of the 

data for model training and 25% for model validation. 

Training and validation data are randomly sampled from 

different global basins. Figure 1 illustrates the distribution of 

training and validation wells globally.    

Before machine learning training, the raw well-log data 

underwent thorough cleaning and quality control processes. 

These steps were essential for ensuring data accuracy and 

consistency and for reliable model training and inference. 

The clean-up workflow included automated tasks such as log 

categorization, depth alignment, normalization, and 

removing low-quality data. A key innovation in the clean-up 

process is the introduction of synthetic curve comparisons 

for sonic log classification. This method uses Faust and 

Castagna’s equations to calculate synthetic compressional 

and shear slowness logs from resistivity data. Comparing 

actual sonic logs to these synthetic models offers a robust 

and automated approach for classifying sonic curves, even 

when log names and descriptions are unreliable.  

The core of the ARLAS methodology (Gonzalez et al., 2023) 

is the Gradient Boosting Tree (GBT) machine learning 

model. GBT utilizes an ensemble learning approach that 

creates a predictive model by sequentially combining 

multiple decision trees and iteratively reducing the error 

between predictions and actual values. This technique excels 

at handling complex data patterns and achieving high 

prediction accuracy. 

The ARLAS model utilizes various features, including 

compressional sonic logs, gamma-ray logs, resistivity logs, 

neutron porosity, bulk density, true vertical depth, and well-

location data. This multi-dimensional approach enables the 

model to capture complex relationships between log 

properties and their spatial variations. Here, we extend the 

method to include shear logs and offshore wells.  The trained 

ARLAS model was evaluated on a held-out dataset, 

demonstrating good alignment with measured data in areas 

with sufficient training data (Figure 2). However, challenges 

arise in shallow sections and regions with limited data 

availability, underscoring the need for further model 

refinement. The P5 and P95 curves (representing the 5th and 

95th percentiles of the model predictions) were generated to 

assess model uncertainty and reliability. These bounds 

provide a range in which the true value is expected to fall 

with 90% confidence. Significant discrepancies between P5 

and P95 indicate potential overfitting and decreased 

prediction confidence. 

 

Method - 3D model generation 

 

The method presented here for extracting structural 

information from seismic data is based on the work of Fomel 

(2010). "Plane-wave destruction” utilizes the concept of 

local plane waves, represented as simple linear equations 

that depict seismic events with varying slopes. This 

technique entails predicting each trace in a seismic section 

from its neighbor based on estimated slopes and subtracting 

the prediction from the original trace, yielding a residual that 

represents non-planar wave components. A local operator is 

employed to propagate each trace along the estimated 

dominant slopes, which are determined by minimizing the 

prediction residual through regularized least-squares 

optimization. The technique can also be extended to three 

dimensions by applying it to both inline and crossline 

directions, as is done here. "Predictive painting" then 

advances this concept further, facilitating the recursive 

propagation of a reference trace to distant neighbors, while 

following the local structure of seismic events, effectively 

"painting" the information from the reference trace onto 

neighboring traces. This process enables a more 

comprehensive understanding of the seismic data structure. 

By applying predictive painting to a reference trace that 

contains only time values, we can derive an attribute called 

Figure 2 Example of ARLAS predictions (red curves) as 

compared to measured data (black curves). The plot shows: 

(1) gamma ray, (2) deep resistivity, (3) neutron porosity, (4) 

bulk density, (5) compressional slowness, (6) shear slowness. 

P5-P95 interval in grey. 
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"relative geologic age." This attribute, as defined by Stark 

(2004), indicates the time shift between a given trace and the 

reference trace, effectively showing how much older or 

younger the geology at that trace is in relation to the 

reference point. 

Finally, a representative 3D elastic models can be generated 

based on a relative geological time volume and an ARLAS 

well-log.  Several QCs are made to ensure the well log has a 

long enough section of usable data to generate a meaningful 

representative model (length, absence of salt).  If selected, 

the logs are filtered with a smoothing operator (the 

smoothing length is also randomly chosen) to generate 

models with different frequency content.  Figure 3 outlines 

the complete flow for one seismic image.  The top left shows 

a patch of the image taken from the data library, followed by 

the structural dip and resulting relative age volume.  The 

bottom row contains the models taken after a lookup from 

the well data. 

 

Method - 3D pseudo-synthetic model augmentation 

 

While the approach outlined above works well in well-image 

areas, relative-geological-time estimates can become 

challenging in more complex areas such as around salt.  As 

a result, a complementary approach has been taken, 

combining pseudo-synthetic structural models.  Synthoseis 

(Merrifield et al., 2022) is a package designed to generate 

realistic and diverse synthetic 3D seismic models for training 

deep learning applications in geophysics, addressing the 

need for large quantities of labeled data.  Synthoseis can 

generate different faulting styles and simple salt bodies, with 

the resulting models including 3-way and 4-way closures 

and on-lap (stratigraphic) closures. It generates layered earth 

models with shale and sand layers with varying net-to-gross 

ratios and can model fan-shaped features in the layers.  

However, the package has limitations, including simplistic 

lithological trends and blob-like salt models.  In this paper, 

we have modified Synthoseis to randomly look up real 

interpreted salt masks from a data library (also used for Salt 

Segmentation training; see Roberts et al., 2024 for details).  

To provide a greater diversity of lithological trends, a 

substitution has been performed to utilize observed 

properties from the actual well logs.  Another advantage over 

the previous approach is that we have integrated with the 

Synthoseis lithological trends for the very shallow and deep 

sections where there is a lack of actual well-log data.   The 

results of this workflow can be seen in Figure 4. 

 

 

 

Figure 3 This shows the progression from a stacked seismic image to a representative Vp, Vs, and density volume. Top row: 

seismic image, estimated dip, relative geological time.  Bottom row: Vp, Vs, and density volumes. 
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Discussion and Future Work 

 

In this abstract, we demonstrate how to leverage a vast 

library of seismic and well-log data to generate diverse earth 

models that reflect the petrophysical and structural diversity 

observed in the earth. No single approach adequately 

represents the real-world geological variability of earth 

models; therefore, combining the discussed methods is 

necessary. Well-log data is utilized wherever possible but 

supplemented in shallow and deep sections by petrophysical 

trends. In areas with high image quality, the structure is 

estimated from seismic images and enhanced with synthetics 

to address complex visuals. Interpreted salt masks are used 

to augment synthetic structures, providing realistic 

geobodies. These diverse models will be employed to train 

an ML-based tomographic model (Crawley et al., 2024) and 

enhance its generalizability and robustness to unseen 

scenarios. 

 

Conclusions 

 

This work presents a comprehensive strategy that combines 

advanced machine learning techniques, seismic structural 

analysis, and hybrid synthetic augmentation to generate 

realistic earth models. The ARLAS model effectively 

predicts missing shear wave sonic logs with quantified 

uncertainty, addressing critical data gaps common in global 

well datasets. Our seismic-to-model workflow, utilizing 

predictive painting and relative geological time attributes, 

enables the direct translation of seismic structures into 

accurate elastic models. Furthermore, integrating pseudo-

synthetic earth models with real-world salt masks and 

lithological information effectively enhances geological 

realism, particularly in structurally complex areas. These 

combined innovations significantly improve the 

representativeness and diversity of training data, which will 

translate into substantial benefits for ML-based tomographic 

updates and regularizing Full Waveform Inversion (FWI) 

models. 
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Figure 4 An example of a representative Vp, Vs, and density volume generated from a pseudo-synthetic structural model. Top row: 

Synthoseis Vp model, relative geological time, salt mask.  Bottom row: Vp, Vs, and density volumes incorporating well-log 

information. 


