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Summary 
 
A land dataset can be decimated in such a way that the result 
naturally divides into even smaller subsets, suitable for 
surface-consistent computations. The underconstrained 
nature of these computations causes incongruence among 
solutions, but a simple constraint solves this issue. 
Combining solutions then yields an excellent approximation 
to the surface-consistent solution for the full dataset. 
 
Introduction 
 
Large land datasets present a robust challenge to seismic 
processing, particularly for surface-consistent computations. 
For these one must solve a problem in which all traces in the 
survey are present at once. One direction of research is to 
determine a method of separating the survey into portions 
that are tractable yet still produce accurate solutions. 
 
This study describes a novel approach to decimation—
referred to here as ‘double decimation’—that is very simple 
to implement and produces small subsets that each cover the 
entire survey. These produce surface-consistent solutions 
with similar trends, and they can easily be combined to 
produce a solution very similar to that of the full dataset. 
 
I describe the method below, along with comments on the 
underconstrained nature of surface-consistent problems. 
This is followed by application to a dense land data set. 
 
Method 
 
In a seismic context the term ‘decimation’ refers to the 
thinning of a dataset so that its size is considerably reduced, 
but in such a way that it is still representative of the full 
dataset in some key aspect. The meaning of the term ‘double 
decimation’ used here refers to decimation performed in 
such a way that the decimated result can be naturally divided 
into a collection of smaller independent subsets.  
 
The essential approach is very simple.  Assuming that 
sources and receivers have each been assigned a sequential 
index, proceed as follows: 

1) Choose some integer N to determine the extent of 
decimation. The decimated result will contain 1/N as 
many traces as the original data, so there will be some 
practical limit to how large N can be. 

2) For each trace I, compute the N-moduli of its source 
index SI and receiver index RI. If mod(SI, N) = 
mod(RI, N), the trace is retained in the decimated 
dataset; otherwise it is discarded.  For some purposes, 
this can be the end of the decimation procedure. 

3) One potential shortcoming of this method is that it is 
possible for some sources and/or receivers to not be 
represented in the decimated dataset if the modulus 
requirement is not satisfied by their indices. As 
shown in the example below, this is not expected to 
be a significant problem.  However, if it is absolutely 
required in some instance to have every source and 
receiver represented, that can be dealt with at this 
point, as described below in the example. 

4) Finally, each trace in the decimated dataset can be 
assigned a value DI ≡ mod(SI or RI, N). Based on this 
value the decimated dataset can be further separated 
into N independent datasets, each containing 1/N 2 as 
many traces as the original dataset. They are 
independent in the sense required for surface-
consistency, namely, that no source or receiver is 
referenced in more than one subset. Furthermore, if a 
typical scheme of indexing is used, then each subset 
will extend over the entire survey. Here each of these 
subsets will be referred to as ‘doubly decimated’. 

 
Note on underconstrained solutions 
 
While the surface-consistent equations are overdetermined, 
they are also underconstrained (see, e.g., Taner et al., 1974; 
Wiggens et al., 1976; Morley & Claerbout, 1983; Cambois 
& Stoffa, 1992; Millar & Bancroft, 2006; van Vossen et al., 
2006; Baek et al., 2019; Zhang et al., 2024). Thus the 
equations do not possess a unique solution. In the present 
context, this means that solutions obtained from various 
decimation schemes can give spuriously different results. 
 
The underconstrained problem can be approached in a 
simple way. The equations we are solving are of the form 
 

𝑠௜ + 𝑟௝ + 𝑐௞(௜,௝) + ℎ௟(௜,௝) = 𝑎௜௝ , 
 

where 𝑠௜ is the contribution from the 𝑖th source, 𝑟௝ is the 
contribution from the 𝑗th receiver, and 𝑐௞ and ℎ௟ are CMP 
and offset bin contributions. These are parameters to be 
estimated, while 𝑎௜௝ is an observed property of the trace, 
such as log amplitude or static shift. The underconstrained 
nature of these equations can be recognized by noting that if 
a solution {𝑠௜ , 𝑟௝ , 𝑐௞ , ℎ௟} exists for all 𝑖, 𝑗, 𝑘, 𝑙, then we can 
add any four constants 𝜎, 𝜌, 𝜒, 𝜂 to create {𝑠௜ + 𝜎, 𝑟௝ +

𝜌, 𝑐௞ + 𝜒, ℎ௟ + 𝜂}, which will also be a solution as long as 
𝜎 + 𝜌 + 𝜒 + 𝜂 = 0. This last expression will determine the 
value of 𝜂 if we choose 𝜎, 𝜌, 𝜒 so as to constrain the source, 
receiver and CMP components to each be zero when 
summed over all traces. This is the course followed in this 
study to prevent spurious shifts between solution sets for 
various choices of decimation. 



Double decimation for surface-consistent computations 

Example 
 
The method has been tested on a land 3D dataset from West 
Texas, covering 85 mi2 (220 km2). This densely-acquired 
dataset contains 720 million traces, 40,000+ sources, and 
40,000+ receivers, with offsets up to 10.5 mi (17 km). Its bin 
size (37.5 ft x 37.5 ft (11.4 m x 11.4 m)) is designed for a 
shallow target at ~2000-2500 ft (~600-750 m).  
 
Surface-consistent amplitude scaling is performed to 
demonstrate the efficacy of the decimation method. An 
amplitude measure for each trace was determined in a typical 
way by computing the root-mean-square amplitude within a 
window of interest. The logarithm of the amplitude was 
computed, and the average log amplitude of the input was 
subtracted from each trace. Figure 1 shows a snapshot of a 
few of the source scalers that result when surface-consistent 
decomposition is applied to datasets of various sizes: 
 

1) The full dataset (720 million traces (m.t.)) 
2) A dataset decimated using N = 10 (72 m.t.) 
3) Subset A of 2), containing traces with DI = 1 (7.2 m.t.) 
4) Subset B of 2) with DI = 2 and DI = 3 (14.4 m.t.) 
5) Subset C of 2) with DI = 4-6 (21.6 m.t.) 
6) Subset D of 2) with DI = 0 and 7-9 (28.8 m.t.) 

 
The agreement between the full and the decimated datasets, 
1) and 2), is excellent. The doubly decimated subset, 3), and 
combinations of doubly decimated subsets, 4)-6), show more 
deviation, but the agreement is still very good.  In Figure 2 
we see a similar trend for receiver scalers.   
 
In Figure 3 we see much less agreement among estimates of 
CMP scalers.  This is not surprising, given that there are 
O(102) as many CMP parameters as sources or receivers. 
Therefore, the fold determining each of them is much lower. 
Most processors rarely look at the CMP results, much less 
use them, and the disparity for different inputs seems not to 
have affected the source and receiver results significantly, 
which is what matters.  We can decrease the observed CMP 
disparity by superbinning the CMPs to a sparser set, but it is 
not clear if this would provide a useful benefit. 
 
In Figure 4 we have shown offset scalers for the full range 
of offset bins. This component follows an overall trend and 
is similar for all inputs. Greater deviation is seen at long 
offsets where fold is notably lower, as shown in the inset. 
 
We turn next to map displays in Figures 5-10. In Figure 5 we 
show the logarithm of source scalers estimated from the full 
dataset. We do not show the result estimated from the 
decimated dataset, as it is visually indistinguishable from 
Figure 5.  Instead, we show the difference between the two 
in Figure 6, multiplying by a factor of 20 to discern any 
behavior.  The differences seem largely random. 

We can also create a third set of scalers to map by combining 
the estimation results of inputs A, B, C, and D. Recall that 
these collectively used the same input traces as the 
decimated dataset but solved them in four separate smaller 
computations. We emphasize here how easy it is to 
recombine the results after the four surface-consistent 
decompositions, because no source or receiver is shared by 
any of them. Thus there is no weighting required to combine 
different results for the same source or receiver. We simply 
merge and sort the four sets of scalers into one.  The result 
again is visually indistinguishable from Figure 5, and the 
difference x 20 is displayed in Figure 7.  We see that the 
error, though small, is greater than in Figure 6, and in this 
case possesses some spatial trends. It is non-geological and 
presumably results from solution constraints which are 
slightly different than for the full and decimated datasets. 
 
Figures 8-10 show analogous results for receiver scalers, 
with one instructive, behind-the-scenes difference: in the 
decimation process, one receiver was not included by the 
modulus criterion.  This receiver had an index of 35917 and 
its receiver gather had only eleven traces, none of which had 
a source index ending in “7”. The dataset has a nominal 
receiver fold of nearly 17,000, so this is a rare outcome. If 
this receiver is required after decimation, there are five of the 
eleven traces with source index values ending in “9”, so we 
could set DI = 9 for those five traces and discard the other 
six. Even though the receiver index has the “wrong” 
modulus for that group, it is not represented in any other 
group, so the independence of the groups would still be 
maintained. However, having said all that, in this case we 
chose to simply ignore the one missing receiver. 
 
In Figure 8 we show the logarithm of receiver scalers 
estimated from the full dataset (minus index 35917, location 
indicated). As before, this is visually identical to the result 
for the decimated dataset and for the merge of results from 
subsets A-D.  We display the differences x 20 in Figures 9 
and 10 showing similar patterns as for the source scalers. 
Maps for individual subsets (not shown) are also similar to 
Figure 8 and to each other. Showing such consistency 
between subsets would be a valuable test for a larger dataset 
when the full result is not available for comparison. 
 
Conclusions 
 
I have described a ‘double decimation’ method for land 
datasets, suitable for surface-consistent computations. A 
simple approach to constraints ensures that solutions of 
partial and full datasets are congruent. Using these methods, 
subsets containing as little as 1% of the data can be solved 
independently, and their respective solutions combined to 
yield a very good approximation of the full solution. This 
can facilitate processing of increasingly large and dense land 
datasets. 
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Figure 1: A few of the source scalers estimated by surface-consistent 
decomposition for several different input datasets. Agreement is 
generally excellent. 
 

 
 
Figure 2: A few of the receiver scalers estimated by surface-
consistent decomposition for several different input datasets. 
Agreement is generally excellent. 

 
 
 
 
 

  
 
Figure 3: A few of the CMP scalers estimated by surface-consistent 
decomposition for several different input datasets. Agreement is 
worse than for Figures 1 and 2, as fold is much lower for CMPs. 
 

  
 
Figure 4: The full range of offset scalers estimated by surface-
consistent decomposition for several different input datasets. Fold is 
shown in the insert. Agreement is worse for low-fold large offsets. 
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Figure 5: Map view of source scalers estimated by surface-
consistent decomposition using the full dataset of this study. This is 
visually indistinguishable from similar maps for the decimated and 
the recombined doubly-decimated datasets. In Figures 5-10, green 
is zero, yellow and red are positive, and cyan and blue are negative. 
 

 
Figure 6: Twenty times the difference between source scalers 
estimated from the full and decimated datasets. The color limits are 
the same as for Figure 5. The differences appear small and random.  
 

 
Figure 7: Twenty times the difference between source scalers 
estimated from the full and recombined datasets. The differences, 
greater than in Figure 6, are still relatively small but show some 
spatial trending due to a mathematical artefact. 

Figure 8: Map view of receiver scalers estimated by surface-
consistent decomposition using the full dataset of this study. This is 
visually indistinguishable from similar maps for the decimated and 
the recombined datasets. The color bar limits are 50% larger than in 
Figure 5. The black circle shows the location of the missing receiver. 
 

 
Figure 9: Twenty times the difference between receiver scalers 
estimated from the full and decimated datasets. The color limits are 
the same as for Figure 8. The differences appear small and random.  
 

 
Figure 10: Twenty times the difference between receiver scalers 
estimated from the full and recombined datasets. The differences, 
greater than in Figure 9, are still relatively small but show some 
spatial trending due to a mathematical artefact. 


