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Summary 
 
This abstract describes a denoise algorithm using the linear 
Radon transform. Instead of separating the signal and noise 
after the transformation, the proposed method 
simultaneously builds a noise and a signal model with the 
transform. Explicitly including the noise model in the 
computation reduces artifacts, and the algorithm is more 
robust to erratic noise than the transform-separation method. 
Working in the intercept time slowness (Tau-P) domain 
improves the sparsity of the solution and reduces the impact 
of aliasing for under-sampled data. The extra cost of 
calculating the noise model is negligible because only copy 
and simple multiplication-addition are involved in each 
iteration. Both synthetic and field data examples prove the 
effectiveness of the filter. 
 
Introduction 
 
The importance of denoise cannot be overstated for seismic 
imaging. In practice, noise is classified into coherent and 
random, depending on continuity. The transform-separation 
method, the rank-reduction method, and the prediction error 
filter are three standard denoising tools. 
 
The transform-separation method explicitly decomposes the 
data in an appropriate domain, selectively picks amplitudes, 
and reassembles the signal after muting and tapering. 
Depending on the nature of the noise and signal, various 
domains could be used, and the transform could be a Fourier 
transform (Stewart and Schieck, 1989), wavelet transform 
(Yu et al., 2022), Tau-P transform, or others. The success of 
this type of method depends on the distribution of the signal 
and noise in the transform domain and the sharpness of the 
filter applied. The separation cannot be clear when the noise 
and signal overlap in the transform domain. This is 
exacerbated by the fact that seismic data is mostly spatially 
under-sampled. Aliasing presents another serious challenge 
for the transformation. An aggressive denoise risks hurting 
signals, while a less aggressive denoise leaves more artifacts 
and noise. 
 
When noise is random and follows the Gaussian distribution, 
the prediction error filters, such as the f-x filter (Canales, 
1984), remove the noise effectively. However, the prediction 
filters' success depends on the noise's deviation from the 
Gaussian distribution or the orthogonality between the noise 
vector and the signal vector. Erratic noise does not have a 
Gaussian distribution and can cause strong artifacts in the 
results. Rank-reduction methods, such as the Cadzow filter 
(Stewart, 2008), experience the same difficulties in the 
presence of erratic noise. 

 
Researchers have put great effort into making the filter 
robust to erratic noise during the past decade. Sternfels et al. 
(2015) propose explicitly building a noise model while 
searching a low-rank Hankel/Toeplitz matrix for each 
temporal frequency-space (f-x) slice. Including the L1 norm 
of the erratic noise model in the object function mitigates the 
effect the erratic noise has on the signal. Chen and Sacchi 
(2015) suggest the rank-reduction filter can also become 
robust to erratic noise if a bisquare function replaces the 
quadratic error criterion function. They use the iteratively 
reweighted least-squares method to solve the optimal robust 
factorization. 
 
Both strategies mentioned above work in the f-x domain and 
assume the erratic noise is present only in a small subset of 
the traces. However, in some cases, intense erratic noise can 
contaminate most of the data and spread over most traces, 
which is especially common for blended data. The f-x 
domain does not support the sparsity of the erratic noise.  
 
In this abstract, I propose to denoise in the Tau-P domain 
using the linear Radon transform. I compute the noise model 
and the Tau-P transform of the signal simultaneously by 
solving a convex optimization problem. My work is inspired 
by the joint low-rank and sparse inversion method proposed 
by Sternfels et al. (2015) but differs in several ways. Firstly, 
we set up our work in the Tau-P domain instead of the f-x 
domain. When erratic noise exists in multiple traces, the 
solution in the Tau-P domain has better sparsity, and the 
computation is more stable. Secondly, the optimization 
problem for the joint low-rank and sparse inversion method 
involves three norms: the nuclear norm of the Hankel matrix, 
the L1-norm of the erratic noise, and the L2-norm of the 
Gaussian noise. The multiple norm types complicate the 
problem, and the authors use the alternating direction 
method of multiplier (ADMM), which is expensive. Our 
objective function only has one L1 norm term, which is 
much simpler. Following the introduction of the method, we 
present both synthetic and field data tests. 
 
Method  
 
We assume the observed data is the sum of a signal part and 
a noise part, and the signal has a sparse representation on a 
complete basis or a subset of the basis. Let 𝑑𝑑 be the observed 
data, we can write it in the matrix form as 

𝑑𝑑 = 𝐴𝐴𝐴𝐴 + 𝑛𝑛,                                 (1) 
where 𝐴𝐴 is the coefficient vector of the signal representation. 
The matrix 𝐴𝐴  consists of the necessary basis vectors to 
represent the signal, which may be a subset of a complete 
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basis. The noise 𝑛𝑛  is assumed to be sparse, but tests 
demonstrate satisfying results in non-sparse scenarios. 
 
Different from the transform-separation method, I solve both  
𝐴𝐴 and 𝑛𝑛 simultaneously. Firstly, we rewrite equation (1) as 

𝑑𝑑 = [𝐴𝐴 𝐼𝐼] �
𝐴𝐴
𝑛𝑛� = �̂�𝐴𝐴𝐴�,                             (2) 

where 𝐼𝐼 is the identity matrix, �̂�𝐴 = [𝐴𝐴 𝐼𝐼], and 𝐴𝐴� = �𝐴𝐴𝑛𝑛�. The 
problem is highly under-determined.  
 
To find the solution to equation (2), I seek the combination 
of 𝐴𝐴 and 𝑛𝑛, which solves the optimization problem given by 

min
𝑥𝑥,𝑛𝑛

|𝐴𝐴|1 + 𝛼𝛼|𝑛𝑛|1

subject to  𝑑𝑑 = �̂�𝐴𝐴𝐴�
,                          (3) 

where 𝛼𝛼 balances the signal and noise. 
 
The optimization problem minimizes the cost of 
representing the observed data using a frame that combines 
two bases. One basis consists of all the columns of 𝐴𝐴, and 
the other is the standard basis. A is carefully chosen so that 
the cost to represent the desired signal in terms of the 
columns of A is much less than that using the standard basis. 
A satisfying basis mostly leads to a sparse solution of 𝐴𝐴. In 
the extreme case, only one of the elements of 𝐴𝐴 is non-zero, 
and the desired signal matches one column of 𝐴𝐴 . On the 
other side, the representation of the noise part, including 
random noise and undesired coherence events, in terms of 
the columns of the matrix 𝐴𝐴 should be more expensive when 
compared to the standard basis, which is their L1 norm.  
 

The optimization problem is a standard base pursuit problem 
(Berg and Friedlander, 2008), and I solve it using the spectral 
projected gradient method for the L1 norm (SPGL1). SPGL1 
(Birgin, Martínez, and Raydan, 2000) is a fully developed 
solver widely used by the imaging community, with a proven 
record of being fast and stable. I do not separate erratic noise 
from Gaussian noise either. It is not practical for a processor 
to specify the noise level of the Gaussian noise. 
 
I chose Tau-P domain in the computation because the 
transform is easy to implement. The algorithm itself is not 
limited to this domain. As discussed previously, a working 
domain providing better sparsity is always preferred. When 
the noise has some pattern and can be represented sparsely 
in a particular domain, we should use this prior by replacing 
the identity matrix with a basis from the specific domain. 
 
If a source signature is available, we can expand equation (1) 
as 

𝑑𝑑 = 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑛𝑛,                                 (4) 
where 𝐴𝐴 is the source signature. A source signature improves 
the computation as the solution 𝐴𝐴 becomes sparser. 
 
Implementation of the operator �̂�𝐴 and its adjoint operator is 
the most time-consuming step of the algorithm. It includes 
two parts. One is the regular forward or backward transform 
between the Tau-P domain and the t-x domain, and the other 
involves the noise term 𝑛𝑛. The latter part only needs a copy 
operation or a multiplication-addition operation. Both 
operations take much less time than the linear Radon 

 

 
Figure 1:  Comparison between the proposed method and the Cadzow filter with weak noise. a) and b): input data with noise and the noise-free 
data; c) and d): filtered result using the Cadzow filter and the difference between the filtered result and the true solution; e) and f): filtered result 
using the proposed method and the difference between the filtered result and the true solution. 
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transform. Fast Fourier transforms can be used to speed up 
the computation further.  
 
Synthetic examples 
 
I tested the algorithm using synthetic data and compared the 
proposed algorithm with the Cadzow filter. My synthetic 
data has 24 traces, and the recording length is 2 seconds. The 
distance between neighboring traces is 12.5 meters, and the 
offset ranges from 0 to 287.5 meters. The noise-free data 
consists of two hyperbolic events. One starts from 800 ms at 
zero offset, and the other starts from 1400 ms. Both use a 
normal move-out velocity of 4000 m/s. The first event uses 
an Ormsby wavelet of amplitude 1. The Ormsby wavelet 
used by the second event has an amplitude of 0.2 and a 
different bandwidth. 
 
Noise spikes are randomly added to the data at 200 points. 
The amplitude of the spikes is also random, with a uniform 
distribution and zero expected value. I generated three data 
sets using different noise strengths. In the weak noise case, 
the value of the noise ranges from -0.5 to 0.5. In the strong 
noise case, the value of the noise ranges from -10 to 10. In 
the median noise case, the range is between -2 to 2.  
 
To compare the filtered result, I define the signal/noise ratio 
as follows, 

𝐴𝐴𝑆𝑆𝑆𝑆 = 10 log 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑃𝑃 𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑃𝑃 𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

. 
The error is defined as the difference between the filtered 
result and the true signal. Table 1 shows the comparison 
between the proposed method and a Cadzow filter. The 

Cadzow filter is applied on time windows of 1 s length with 
500 ms overlap, and we choose the truncation rank as 2. The 
proposed method is applied to the whole data set without 
dividing the data into windows, and the noise weight factor 
𝛼𝛼 is set to 1. The maximum number of iterations for SPGL1 
is 250. 

The proposed method is superior to the Cadzow filter 
regarding the signal/noise ratio in all three cases. Although 
the signal/noise ratio of the input data decreases from 10.7 
dB to -16.0, it only changes from 26.3 dB to 9.71 dB after 
our proposed method. The proposed method raises the S/N 
ratio about 25 dB in the strong noise case, while the Cadzow 
filter only improves about 3 dB. This proves the strategy's 
robustness to erratic noise. 
Figures 1 and 2 show the seismic data before and after 
filtering for the weak and strong noise cases. When the noise 
is weak, both methods achieve satisfying results. The weak 
event is mostly successfully recovered except for the edge 
effect caused by the Cadzow filter. However, when the noise 
becomes very strong, the Cadzow filter deteriorates quickly. 
Much noise remains after denoising, and the weak event 
disappears. The proposed method still recovers the weak 
event, although slight noise residue becomes obvious. 

  Table 1: Signal/noise ratio comparison  
Input data (dB) After denoising (dB) 

Proposed method Cadzow filter 
10.7 (weak noise) 26.3 13.7 

-1.61 (median noise) 20.4 1.20 
-16.0 (strong noise) 9.71 -12.7 

    

 
Figure 2:  Comparison between the proposed method and the Cadzow filter with strong noise. a) and b): input data with noise and the noise-free 
data; c) and d): filtered result using the Cadzow filter and the difference between the filtered result and the true solution; e) and f): filtered result 
using the proposed method and the difference between the filtered result and the true solution. 
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Field example 
 
Encouraged by the success of the synthetic data, the method 
was tested to remove blending noise on simultaneously shot 
data. Our field data example is part of a shot line from a 
common receiver gather of an ocean bottom node (OBN) 
acquisition. There are 615 traces in the data set, and the 
distance between neighboring traces is around 50 m. The 
record length is 8 s, with a sample rate of 12 ms.  
 
The proposed robust Tau-P filter is applied on small 
overlapping windows. Each widow has 24 sequential traces 
and 100 samples in the time direction with some padding. 
The next window moves 12 traces in the space direction or 
50 samples in the time direction. 
 
Figure 3 presents the raw input data, the filtered result after 
applying the robust Tau-P filter, and the difference between 
the previous two. Most of the noise is removed, with signal 
leakage being minimal. The result could be further improved 
by applying local linear move out to increase sparsity. 
 
When the noise is dense, the chance for the algorithm to 
create false events increases. Depending on the acquisition 
design of simultaneous shooting, it could become a serious 
problem. Inversion-based deblending, which utilizes 
knowledge of blending time, is expected to perform better 

for deblending purposes and is commonly used in the 
industry. 
  
Conclusion 
 
Explicitly modeling the noise better describes the noise term, 
helps reduce artifacts, and makes the filter more robust to 
erratic noise. By solving the basis pursuit problem, we can 
effectively remove unwanted noise with minimal signal 
leakage. The solution in the Tau-P domain has stronger 
sparsity than the f-x domain and fits better the under-
determined problem. Both synthetic and field data prove the 
proposed Tau-P filter is effective and efficient. The cost of 
the extra computation of the noise term is negligible 
compared to the Tau-P transform, and the cost could be 
further reduced in practice.  
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Figure 3:  Field data test. The horizontal axis shows the index of traces. a) input data; b) after denoise using the proposed method; c) the difference 
between the input and the filtered result. 


