
F I R S T  B R E A K  I  V O L U M E  4 4  I   F E B R U A R Y  2 0 2 6 7 1

SPECIAL TOPIC: DIGITALIZATION / MACHINE LEARNING

AI. We introduce a practical digitalization stack: (1) a self-de-
scribing seismic representation using MDIO v1 (Sansal 2023a, 
2023b; Michell 2025), (2) schema standards based on templates 
that unify how seismic datasets are represented and used, (3) 
agent-driven workflows that reconstruct missing or inconsistent 
metadata in legacy SEG-Y files at scale with verification, and (4) 
embedding-based retrieval that enables fast, relevance-focused 
discovery across acquisition and processing documentation. 
Together, these components close the gap between ‘data in 
files’ and data that can be searched, validated, and utilised by 
downstream applications and AI systems.

The resulting ecosystem supports natural-language inter-
action across technical, commercial, and operational data by 
expressing each modality through explicit, machine-readable 
metadata. Seismic volumes expose geometry, coordinate refer-
ence systems, and processing context in a consistent form, while 
well-log data is integrated through columnar representations 
suitable for analytical and machine-learning workflows (Gon-
zalez 2024, 2025). Unstructured documents, such as acquisition 
and processing reports, are mapped to standardised metadata 
fields using automated template recognition and hybrid retrieval 
techniques, including dense retrieval methods (Karpukhin et al., 
2020). Structured enterprise systems, including orders, entitle-
ments, contracts, and financial records, are incorporated through 
normalisation pipelines. Collectively, this approach transforms 
subsurface data from static archives into an active, queryable 
knowledge layer that supports AI-assisted analysis, valida-
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Abstract
This article presents a practical framework for AI-assisted 
subsurface data access based on explicit data representations, 
agent-based workflows, and efficient information retrieval. We 
demonstrate large-scale conversion of SEG-Y archives into 
self-describing MDIO v1 datasets and present a case study on 
agent-driven reconstruction of seismic metadata from legacy 
text headers. A second case study evaluates embedding-based 
retrieval across acquisition and processing reports, showing that 
vector quantisation and graph-based indexing enable low-latency, 
relevance-driven search. These capabilities are integrated into an 
interactive, multi-agent system that supports natural-language 
analysis and coordinated access to structured and unstructured 
subsurface information.

Introduction
Energy industry organisations and data providers hold petabytes 
of seismic data, well data, and technical reports, yet much of 
this information remains difficult to locate, integrate, and use 
operationally. The challenge is rarely a lack of data; it is the 
absence of a consistent, machine-readable structure across legacy 
formats and fragmented metadata sources. When concepts such 
as geometry, sampling, units, and provenance are implicit, or 
scattered across SEG-Y headers, PDFs, and spreadsheets, auto-
mation becomes fragile, and digital workflows are obstructed.

To address the issue, we have created a digital platform that 
make subsurface assets self-describing and accessible to modern 
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Figure 1 A high-level view of two MDIO v1 datasets, 
viewed using Xarray (left) a 3D post-stack dataset; 
(right) a streamer field dataset.
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inferred. Each dataset specifies its main dimensions (e.g., cdp, 
angle, inline, crossline), along with associated coordinate varia-
bles (e.g., cdp_x, cdp_y, coordinate scalars). The MDIO dataset 
framework is defined as a JSON schema, which details coordi-
nates, dimensions, masks, and key survey metadata as separate 
arrays. This design allows clear interpretation of survey geometry 
and navigation information where applicable. To promote open 
and reproducible use, MDIO is released as open-source soft-
ware under the Apache 2.0 licence (Sansal 2025a), along with 
cloud-compatible SEG-Y parsing tools (Sansal 2025b). Each 
MDIO v1 dataset is naturally compatible with the popular Xarray 
Python library (Hoyer 2017), enabling access to seismic variables 
and coordinates through a well-established third-party tool.

tion, and decision-making across technical and commercial 
workflows.

MDIO v1: From files to self-describing datasets
Most seismic digitalization challenges occur in the same area: 
geometry and semantics are implicit. In SEG-Y, key concepts such 
as dimensionality (2D vs. 3D, post-stack vs. gathers), coordinate 
scalars, and navigation are derived from trace-order and header 
conventions that vary by project and vendor. This makes auto-
mation fragile and requires every downstream process, analytics, 
visualisation, and ML to repeat the same interpretation logic.

An MDIO v1 dataset offers a self-describing representation 
of seismic data, with explicit structural metadata rather than 

Figure 2 An inline slice sampled from the Poseidon 
dataset using the code on the left.

Template Grid Dimensions Chunk Sizes Coordinates

CdpAngleGathers2D cdp, angle 16×64×1024 cdp x/y

CdpAngleGathers3D inline, crossline, angle 8×8×32×512 cdp x/y

CdpOffsetGathers2D cdp, offset 16×64×1024 cdp x/y

CdpOffsetGathers3D inline, crossline, offset 8×8×32×512 cdp x/y

CocaGathers3D inline, crossline, offset, azimuth 8×8×32×1×1024 cdp x/y

PostStack2D cdp 1024×1024 cdp x/y

PostStack3D inline, crossline 128×128×128 cdp x/y

StreamerFieldRecords3D sail_line, gun, shot_index, cable, 
channel

1×1×16×1×32×1024 source x/y, group x/y, shot_
point, ffid

StreamerShotGathers2D shot_point, channel 16×32×2048 source x/y, group x/y

StreamerShotGathers3D shot_point, cable, channel 8×1×128×2048 source x/y, group x/y, gun

Table 1 Summary of MDIO v1 seismic product templates currently used in data management. Each template defines the core dataset dimensions and coordinate variables 
that structure CDP, offset, angle, shot, streamer, common-offset/common-angle (CoCa), and post-stack data in 2D and 3D, with depth/time variants.
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agents discussed in the next section. The current set of extend-
able seismic templates used in operational data management is 
summarised in Table 1. Importantly, because MDIO v1 separates 
headers, coordinates, and other data from the traces, these tem-
plates can be refined by editing the dataset without reingestion. 

Cloud-scale ingestion benchmarking
Large-scale ingestion of legacy SEG-Y data into MDIO v1 was 
benchmarked using source SEG-Y files stored in Amazon S3 
(standard storage class). The ingestion workflow is designed 
to operate directly on object storage, without modifying or 
relocating the source data. Benchmark ingestion and conversion 
workflows were executed on c7g.8xlarge instances (32-core AWS 
Graviton processors), providing a reproducible and well-defined 
compute environment for parallel SEG-Y parsing. The ingestion 
process first scans the SEG-Y headers to discover and validate 
dataset dimensions, coordinate variables, and associated metadata 
required by the schema. This phase extracts geometry informa-
tion without materialising trace data. Second, a write phase 
constructs the chunked MDIO v1 dataset and writes it directly 
to object storage in the MDIO format. Table 2 shows the timing 
data for ingesting a collection of post-stack SEG-Y files into 
MDIO v1. We find that the end-to-end throughput, including the 

The following example demonstrates interactive access to a 
post-stack 3D dataset using the Python MDIO v1 library. Here, 
seismic amplitudes are indexed by inline and crossline coordi-
nates and visualised without additional geometry reconstruction. 
The dataset provides sel and isel commands to access data 
according to coordinate values and logical indexing, respectively. 
The result is shown in Figure 2 as a seismic inline sampled from 
the Poseidon dataset.

Seismic template definitions
With MDIO v1, specific conventions for JSON-Schema or tem-
plates are designed to support a wide variety of seismic product 
types across acquisition, processing, and migration stages. Each 
template establishes the dataset’s dimensional structure and 
required coordinate variables, offering a standard representation 
for common seismic products. These templates form the structur-
al foundation for both data ingestion and downstream use.

At the time of writing, we have ingested petabytes of seismic 
data from more than 100,000 individual SEG-Y files into MDIO 
v1, covering a wide variety of field data, pre-stack, and post-
stack seismic product types. Due to the large volume of SEG-Y 
data, providing a detailed schematisation of the seismic data 
was impractical, so that task has been deferred to generative AI 

File 
No 

Total Time 
(s)

Scan Time 
(s)

Ingest Time 
(s)

SEG-Y Size 
(GB)

MDIO Size 
(GB)

1 3188.81 1269 1886 1962.0 1473.2

2 2467.06 997 1440 1524.6 1045.7

3 1696.93 649 1022 1020.6 690.4

4 1157.45 440 698 667.7 436.4

5 811.30 337 462 499.7 305.0 Table 2 Benchmark results for ingestion of post-stack 
SEG-Y datasets into MDIO v1.

Survey Domain Gather / Seismic type Migration Stage Regularization

2D Post-stack Seismic section — —

2D Pre-stack CDP gathers (offset) Pre-migration —

2D Pre-stack Shot gathers — —

3D Post-stack Seismic volume — —

3D Pre-stack CDP gathers Post-migration Regularised

3D Pre-stack Shot gathers — —

3D Pre-stack CDP gathers Pre-migration Maybe Regularised

OBN Pre-stack Receiver gathers — Non-regularised

OBN Pre-stack Receiver gathers — Partly regular – Pressure

OBN Pre-stack Receiver gathers — Non-regular – 4C

Land Pre-stack Shot gathers — —

Land Pre-stack OVT gathers Post-migration —

Land Pre-stack CDP gathers Post-migration Regularised

Table 3 Canonical seismic product taxonomy used in MDIO v1. The table summarises representative 2D, 3D, marine, land, and OBN products and classifies each by survey 
type, processing domain, gather type, migration stage, and regularisation status.
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different aliases over time (e.g., CDP, CMP, CMP NO.), requiring 
normalisation to derive a consistent metadata schema across the 
library. At the scale of a library with millions of SEG-Y files, 
manual interpretation of text headers is not feasible; an automated 
solution guided by subject matter expertise is required to fully 
populate.

To address these challenges, we constructed a labelled 
training and evaluation dataset derived from 57 manually 
interpreted SEG-Y files, each containing full text headers, 
binary header information, and SME-validated ground-truth 
annotations. Each session included canonical seismic product 
type labels, standardised header overrides, and unit defi-
nitions, providing authoritative reference data for product 
classification, field extraction, and schema mapping. Although 
modest in size, this dataset was intentionally curated to span 
heterogeneous acquisition types, processing workflows, and 
header conventions, encompassing approximately 800 distinct 
metadata labels representative of the broader seismic data  
library.

We then developed a multi-agent AI system to perform end-
to-end metadata reconstruction suitable for MDIO v1 ingestion. 
The system leverages large language models within a structured 
pipeline that combines free-text reasoning with explicit domain 
constraints derived from SME guidance. All agents were imple-
mented using the Anthropic Claude Sonnet 4 LLM. No model 
fine-tuning was performed; performance gains were achieved 
through agent decomposition, prompt refinement, rule encoding, 
and SME-in-the-loop iteration. The automated pipeline consists 
of three primary agents:
1.  �Template (product type) classification agent – this agent

determines the canonical seismic product type consistent with
the MDIO v1 taxonomy. It evaluates structural cues (e.g.,
presence of LINE versus INLINE/XLINE), acquisition indi-
cators (e.g., SOURCE descriptors), and processing descrip-
tions (e.g., migration and regularisation statements). Outputs
are validated using rule-based consistency checks. This step
also includes an additional verification agent to verify the
predicted template class from the classification agent.

2.  �Field extraction agent – given the selected template, it iden-
tifies relevant metadata fields from SEG-Y text and binary
headers, including field names, byte locations, data types,
and semantic intent. Extracted fields are normalised into
an intermediate representation independent of the original
SEG-Y syntax.

3.  �Schema mapping agent – this agent maps extracted fields
to standardised MDIO v1 metadata namespaces, resolving
SEG-Y aliases and assigning fields to their appropriate roles
(dimensions, coordinate variables, or auxiliary metadata).
Fields that cannot be mapped unambiguously are explicitly
flagged. This step also includes an additional verification
agent to verify if the mapped alias from the mapping agent
indeed matches the same concept as the extracted field in
SEG-Y data.

Each stage is followed by an automated verification step enforcing 
internal consistency, domain constraints, and schema compatibili-
ty. Ambiguous cases and previously unseen patterns were routed 

SEG-Y header scanning and writing, realises high throughput on 
the test machine, with linear scaling in wall time with the file 
size. We also observe that MDIO provides a consistent lossless 
data compression between 25%-39% despite explicitly storing 
coordinates and other information in the dataset.

Automated metadata reconstruction for large-
scale SEG-Y ingestion
We aim to ingest a library of more than 1 million SEG-Y files 
into the MDIO v1 format. This is addressed through three coupled 
metadata reconstruction tasks:
(i) seismic product type identification,
(ii) header field extraction, and
(iii) schema mapping to standardised MDIO v1 fields.

Together, these steps define the minimum requirements for con-
structing MDIO v1 datasets with explicit dimensions, coordinates, 
and consistent metadata. The reconstruction process begins with 
the identification of the canonical seismic product type, which 
determines the dataset’s high-level geophysical structure (e.g., 
2D vs. 3D, pre-stack vs. post-stack, gather organisation). MDIO 
v1 formalises this classification using a controlled taxonomy 
spanning marine, land, and ocean-bottom node (OBN) surveys. A 
representative subset of this taxonomy is summarised in Table 3.

SEG-Y text headers contain critical metadata describing 
survey geometry, acquisition environment, processing history, 
and product semantics. However, these headers are free-form, 
inconsistently structured, and weakly standardised, often encod-
ing essential information using non-standardised language and 
project-specific conventions. Accurate interpretation, therefore, 
typically requires subject-matter expertise (SME). As an exam-
ple, in Table 4, we give an example of information defined in the 
text header, and how they inform the MDIO v1 schema.

Moreover, SEG-Y text headers frequently declare custom 
header overrides, such as non-standard byte locations for inline 
and crossline coordinates, which must be extracted and applied to 
correctly interpret trace headers. In addition, the same geophys-
ical concept may be referred to in the text header using multiple 

SEG-Y Header Cue MDIO Interpretation

cdp, angle, inline, crossline MDIO dimensions

cdp_x, cdp_y, coordinate_scalar MDIO coordinate fields

LINE = single value MDIO: 2D survey

INLINE or XLINE present MDIO: 3D survey

SOURCE = VIB/DYNAMITE MDIO: land acquisition

“PSDM”, “DEPTH MIGRATION” MDIO: post-migration

“CMP gathers” MDIO: pre-migration

“regularised”, “binned”, 
“resampled”

MDIO: regularisation flag

PRODUCT keywords MDIO: product_type 
classification

Table 4 Mapping of key SEG-Y header cues — primarily from the text and binary 
headers — to their corresponding MDIO v1 interpretations.
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technical reports, and commercial and operational records. We 
address this by introducing a chat-based analytical interface that 
enables natural-language queries to coordinate structured oper-
ations across seismic and related geoscientific and commercial 
data sources, without replacing existing systems.

The system is implemented as a hierarchical multi-agent 
framework (Google 2025) shown in Figure 4 in which a 
root agent interprets user intent and decomposes queries into 
explicit, inspectable sub-tasks executed by domain-specific 
agents. Each agent encapsulates procedural domain knowledge 
and invokes constrained computational tools, such as database 
queries, spatial operations, or document retrieval, to ensure 
reproducible and consistent results. This architecture supports 
multi-step, cross-domain analysis while maintaining transpar-
ency, traceability, and alignment with subject-matter-expert 
workflows.

As an example, in Figure 5, a user asks: ‘Find 3D marine seis-
mic surveys in the Gulf of Mexico’. The UI streams information 
about agents and tool calls for the user.

The interface responds conversationally by summarising the 
results of the query. For example, when asked about available 
data, it identifies several 3D marine seismic surveys in the Gulf of 
Mexico and presents a short, ranked list (e.g., Survey A, Survey 
B), while indicating that additional results are available and can 
be explored on request.

‘Of course, I can help with that. I found several 3D marine 
seismic surveys in the Gulf of Mexico. Here are a few of them:
•  Survey A
• Survey B

through an SME review loop, enabling controlled refinement of 
prompts, rules, and schema definitions. A conceptual overview of 
this workflow is shown in Figure 3.

The system was evaluated end-to-end on the labelled dataset 
across three primary tasks: template classification, field extrac-
tion, and field schema mapping. In Table 5, we show that the 
performance was assessed using exact-match accuracy against 
SME-validated ground truth. In addition, we report an end-to-end 
field extraction and mapping metric, in which a field is consid-
ered correct if and only if it is both successfully extracted and 
correctly mapped to the MDIO v1 schema.

These results demonstrate that an agent-based AI system 
can interpret heterogeneous SEG-Y headers and reconstruct 
standardised metadata at or above human-level accuracy, while 
dramatically reducing manual effort. The system achieved low 
operational latency and low cost, making it viable for large-scale 
migration of seismic archives exceeding one million datasets. 
By combining SME knowledge with structured agent reasoning, 
the approach enables full end-to-end metadata reconstruction, 
transforming implicit SEG-Y information into explicit MDIO v1 
datasets with first-class dimensions, coordinates, and standard-
ised metadata.

Interactive analysis framework
Having established standardised, self-describing seismic datasets 
through MDIO and agent-driven metadata reconstruction, the 
remaining challenge is how this information is accessed and 
combined in practice. In subsurface analysis, seismic data is 
important, but we also depend on a broader context of well logs, 

Figure 3 Conceptual multi-agent workflow for end-to-
end SEG-Y metadata reconstruction.

Task Description Accuracy Precision Recall

Template classification Identification of canonical seismic product type 95.00% N/A N/A

Field extraction Extraction of header fields and attributes 99.17% 99.33% 99.50%

Field schema mapping Mapping to MDIO v1 canonical fields 98.16% 98.16% 98.16%

End-to-end extraction and mapping Correct extraction and correct schema mapping 96.83% 96.99% 97.16%

Table 5 Performance of agentic SEG-Y metadata reconstruction tasks.
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generates the visual specification, while the interface renders 
the final output, ensuring reproducible, interpretable, and 
scalable analysis across large geoscientific and commercial  
datasets.

High-performance retrieval on seismic 
acquisition reports
To enable efficient Retrieval-Augmented Generation (RAG) 
(Karpukhin et al., 2020) over a large corpus of seismic acqui-
sition and processing reports, we implemented a semantic 
retrieval pipeline based on dense text embeddings using the 
Google Gemini embedding model (gemini-embedding- 
001).

Scaling retrieval-augmented generation (RAG) to large 
subsurface archives is constrained by the storage and indexing 
cost of high-dimensional embeddings, which can exceed the 
size of the original text. We use 3072-dimensional embed-
dings to preserve technical fidelity, exceeding the default 
dimensional limits of standard PostgreSQL vector indexing 
(PGVector 2025). This is addressed using half-precision vector 
quantisation (halfvec) with PGVector, enabling support for 
the full embedding dimension while reducing index size 
by approximately 50% and improving distance-computation  
performance.

There are many more. Please let me know if you would like to 
know more about any of these surveys.’

Interactive analysis is driven by a deterministic render-
ing protocol that allows agents to communicate through a 
visual medium. By emitting streamed markdown containing 
both narrative text and structured code blocks (e.g., Chart.
js), the language model moves beyond text-only responses 
to ‘express” via interactive visualidations (Figure  6). This 
architecture separates reasoning from execution: the model 

Figure 4 A hierarchical multi-agent system for 
intent decomposition and cross-domain subsurface 
analysis.

Figure 5 The UI streams information that allows the user to understand the 
reasoning of the multi-agent system. In this case, the system is responding to a 
search request for 3D seismic surveys in the Gulf of Mexico.

Figure 6 An auto-generated chart summarising 
the area of a collection of seismic surveys, 
prompt – ‘visualise the survey area’ with additional 
customisation available through the prompt – 
‘Implement a corporate-style blue-grey theme.’
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3.  �What is typical shot spacing for 2D projects worldwide?
4.  �What is typical shot spacing for 2D projects in Brazil?
5.  �What is the record length used for 2D projects offshore Canada?
6.  �How many 3D vintages or projects are available in the

Santos Basin?
7.  �Do we have a survey with XXXX cu. in. source array in our

library?
8.  �What was the gun type used in seismic acquisition projects?
9.  �How many 2D lines are in XXXX project?
10.  �What is the average line length in XXXX project?

As shown in Figure 7, the HNSW half-precision index main-
tains high retrieval fidelity despite aggressive quantisation. 
For approximately half of the queries (e.g., Q2, Q4, Q5, Q6, 
Q9, Q10), 100% recall was achieved at Recall@5, indicating 
that the most relevant document chunks consistently surfaced 
among the top results. More abstract or globally scoped queries, 
such as worldwide shot spacing (Q3) or specific source-array 
configurations (Q7), exhibited lower initial recall (60% at 
K=5). However, recall increased substantially to 86-88% at 
Recall@50. This behaviour is well aligned with RAG work-
flows, where retrieving relevant context within the top 20-50 
chunks is sufficient to fully populate a standard LLM context 
window, ensuring that downstream answer generation remains 
robust.

Using HNSW half-precision indexing yields a 26× improve-
ment in throughput, reducing average query latency from 21 s 

Embeddings are indexed using the Hierarchical Naviga-
ble Small World (HNSW) graph algorithm, selected for its 
sub-second query latency and scalability to millions of vectors. 
Index parameters were tuned to favour high recall, ensuring 
accurate retrieval of domain-specific technical details. Although 
retrieval is executed within PostgreSQL, the system implements 
a semantic RAG pipeline rather than a Text-to-SQL approach, 
retrieving unstructured text fragments based on semantic 
similarity. This is well-suited to subsurface reports, where key 
technical information is often embedded in narrative text rather 
than normalised fields.

Evaluation was performed on a corpus of 1445 seismic acqui-
sition and processing reports using a representative set of ten 
domain-specific queries. Retrieval performance was evaluated 
using Recall@K, defined as the fraction of top-K chunk results 
returned by a halfvec HNSW index that match the top-K results 
from an exact full-precision (FP32) exhaustive vector search. 
Documents were indexed at the chunk level, with 1000-character 
segments and 200-character overlap, yielding 242,312 embed-
dings (approximately 167 chunks per document) and preserving 
technical context across segments.

The query set used in the evaluation was constructed to 
represent typical subsurface information retrieval tasks:
1.  �What is the maximum source volume used in 2D and 3D

surveys offshore?
2.  �What was the record length for 2D surveys in Brazil from

2000 to the present?

Figure 7 (top) Recall statistics for each of the 
questions in the acquisition evaluation set. (bottom) 
The performance impact of replacing exhaustive 
vector scanning with graph-based HNSW indexing at 
half precision.



7 8 F I R S T  B R E A K  I  V O L U M E  4 4  I   F E B R U A R Y  2 0 2 6

SPECIAL TOPIC: DIGITALIZATION / MACHINE LEARNING 

References
Gonzalez, K., Sansal, A., Valenciano, A. and Lasscock, B. [2025]. Well 

log foundation model – Making promptable AI models for interpre-
tation. IMAGE 2025, Proceedings.

Gonzalez, K., Sylvester, Z., Valenciano, A. and Lasscock, B. [2024]. 
From well logs to 3D models: A case study of automated stratigraphic 
correlation in the Midland Basin. IMAGE 2024, Proceedings, 
10.1190/image2024-4101544.1.

Google. [2025]. Agent Development Kit (ADK) Documentation. Google 
AI. Retrieved from https://google.github.io/adk-docs/.

Hoyer, S. and Hamman, J. [2017]. Xarray: N-D labeled arrays and 
datasets in Python. Journal of Open Research Software, 5(1), 10.

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, 
D. and Yih, W.‑T. [2020]. Dense Passage Retrieval for Open‑Do-
main Question Answering. In 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Proceedings, 
6769–6781.

Michell, B., Sansal, A., Lasscock, B. and Roberts, M. [2025]. MDIO v1: 
Schematizing seismic data for AI and processing. IMAGE 2025, 
Proceedings.

PGVector. [2025]. Open‑source vector similarity search for Postgres 
(Version 0.8.x) [Computer software]. https://github.com/pgvector/
pgvector.

PGVector. [2025]. HNSW index support. GitHub documentation.  
https://github.com/pgvector/pgvector?tab=readme-ov-file#hnsw.

Sansal, A. [2025a]. mdio‑python: Python library for the MDIO multidi-
mensional energy data format (Version 1.1) GitHub https://github.
com/TGSAI/mdio-python.

Sansal, A. [2025b]. segy: The Ultimate Python SEG‑Y I/O with Cloud 
Support and Schemas (Version 0.4.1.post2). https://github.com/
TGSAI/segy.

Sansal, A., Lasscock, B. and Valenciano, A. [2023a]. MDIO: Open‑source 
format for multidimensional energy data. The Leading Edge, 42(7), 
465–473.

Sansal, A., Lasscock, B. and Valenciano, A. [2023b]. Integrating energy 
datasets: the MDIO format. First Break, 41(10), 69-75.

to 845 ms. As shown in Figure 7 (bottom), HNSW maintains 
stable, sub-second latency across all queries, whereas exact 
sequential scans exhibit consistently high execution times. 
This demonstrates that approximate indexing combined with 
half-precision quantisation effectively removes the latency 
bottleneck of exhaustive vector scanning, enabling interactive 
semantic retrieval over domain-specific acquisition reports at 
scale. While vector quantisation and HNSW indexing are well 
established in general information retrieval, these results pro-
vide an evaluation of their performance on a subsurface reports 
corpus. The observed performance gains and limited impact 
on retrieval accuracy support real-time retrieval-augmented 
analysis in energy-sector applications.

Conclusions
This work demonstrates that subsurface digitalization can be 
advanced by coupling self-describing seismic representations 
with tool-augmented, agent-based AI workflows. Together, these 
components enable large-scale conversion of legacy SEG-Y 
archives into explicit, machine-readable datasets and support 
accurate reconstruction of standardised seismic metadata, provid-
ing a practical foundation for scalable analysis and AI-assisted 
workflows.

An interactive, agent-based interface brings together seismic 
data, acquisition and processing documents, contracts, operational 
reports, and related metadata through a deterministic, mark-
down-based protocol that separates language-model reasoning 
from data execution. Within this interface, embedding-based 
semantic retrieval enables efficient natural-language search over 
a corpus of subsurface-specific documents. Benchmarking shows 
that half-precision vector quantisation combined with HNSW 
indexing delivers substantial reductions in query latency with min-
imal impact on retrieval quality, enabling interactive use at scale. 
While these techniques are well established in general information 
retrieval, their application and performance characteristics for 
subsurface acquisition and processing reports are evaluated here.
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