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From metadata to embeddings: enabling agentic
Al for subsurface intelligence

B. Lasscock, D. Arunabha?, L. Chen?, M. Gajuld', K. GonzaleZ', C. Liu?, B. Michell',

S. Namasivayam', V.S. Ravipati?, A. Sansal', M. Sujitha?, G. Suren? and A. Valenciano' present
a practical framework for Al-assisted subsurface data access based on explicit data
representations, agent-based workflows, and efficient information retrieval.

Abstract

This article presents a practical framework for Al-assisted
subsurface data access based on explicit data representations,
agent-based workflows, and efficient information retrieval. We
demonstrate large-scale conversion of SEG-Y archives into
self-describing MDIO v1 datasets and present a case study on
agent-driven reconstruction of seismic metadata from legacy
text headers. A second case study evaluates embedding-based
retrieval across acquisition and processing reports, showing that
vector quantisation and graph-based indexing enable low-latency,
relevance-driven search. These capabilities are integrated into an
interactive, multi-agent system that supports natural-language
analysis and coordinated access to structured and unstructured
subsurface information.

Introduction
Energy industry organisations and data providers hold petabytes
of seismic data, well data, and technical reports, yet much of
this information remains difficult to locate, integrate, and use
operationally. The challenge is rarely a lack of data; it is the
absence of a consistent, machine-readable structure across legacy
formats and fragmented metadata sources. When concepts such
as geometry, sampling, units, and provenance are implicit, or
scattered across SEG-Y headers, PDFs, and spreadsheets, auto-
mation becomes fragile, and digital workflows are obstructed.
To address the issue, we have created a digital platform that
make subsurface assets self-describing and accessible to modern
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Al. We introduce a practical digitalization stack: (1) a self-de-
scribing seismic representation using MDIO v1 (Sansal 2023a,
2023b; Michell 2025), (2) schema standards based on templates
that unify how seismic datasets are represented and used, (3)
agent-driven workflows that reconstruct missing or inconsistent
metadata in legacy SEG-Y files at scale with verification, and (4)
embedding-based retrieval that enables fast, relevance-focused
discovery across acquisition and processing documentation.
Together, these components close the gap between ‘data in
files’ and data that can be searched, validated, and utilised by
downstream applications and Al systems.

The resulting ecosystem supports natural-language inter-
action across technical, commercial, and operational data by
expressing each modality through explicit, machine-readable
metadata. Seismic volumes expose geometry, coordinate refer-
ence systems, and processing context in a consistent form, while
well-log data is integrated through columnar representations
suitable for analytical and machine-learning workflows (Gon-
zalez 2024, 2025). Unstructured documents, such as acquisition
and processing reports, are mapped to standardised metadata
fields using automated template recognition and hybrid retrieval
techniques, including dense retrieval methods (Karpukhin et al.,
2020). Structured enterprise systems, including orders, entitle-
ments, contracts, and financial records, are incorporated through
normalisation pipelines. Collectively, this approach transforms
subsurface data from static archives into an active, queryable
knowledge layer that supports Al-assisted analysis, valida-

Figure 1 A high-level view of two MDIO v1 dafasets,
viewed using Xarray (left) a 3D post-stack dataset;
(right) a streamer field dataset.

FIRST BREAK | VOLUME 44 | FEBRUARY 2026 71



@ SPECIAL TOPIC: DIGITALIZATION / MACHINE LEARNING

inline = 2468

1000

10000

7500

5000

2500

° g
E 3000 0 &
- 8
-2500
4000
—5000
—7500
5000
—-10000
6000
3000
crossline
from mdio import open mdio
from mdio.builder.schemas.vl.stats import SummaryStatistics
from upath import UPath
uri = UPath("s3://tgs-opendata-poseidon/full stack agc.mdio", anon=True)
ds = mdio.open mdio (uri)
stats dict = ds.seismic.attrs["statsV1l"]
stats = SummaryStatistics.model validate(stats_dict)
line = ds.sel(inline=2468)
cmap kw = dict (cmap="gray r")
fig kw = dict (aspect=2, size=6, yincrease=False) Figure 2 An inline slice sampled from the Poseidon

line.seismic.T.plot (**cmap kw,

**fig kw, interpolation="lanczos")

dataset using the code on the left.

I T I

CdpAngleGathers2D cdp, angle
CdpAngleGathers3D inline, crossline, angle
CdpOffsetGathers2D cdp, offset
CdpOffsetGathers3D inline, crossline, offset
CocaGathers3D inline, crossline, offset, azimuth
PostStack2D cdp
PostStack3D inline, crossline
StreamerFieldRecords3D sail_line, gun, shot_index, cable,

channel
StreamerShotGathers2D shot_point, channel

StreamerShotGathers3D shot_point, cable, channel

16x64x1024 cdp x/y
8x8x32x512 cdp x/y
16x64x1024 cdp x/y
8x8x32x512 cdp x/y
8x8x32x1x1024 cdp x/y
1024x1024 cdp x/y
128x128x128 cdp x/y
1x1x16x1x32x1024 source x/y, group x/y, shot_
point, ffid
16x32x2048 source x/y, group x/y
8x1x128x2048 source x/y, group x/y, gun

Table 1 Summary of MDIO v1 seismic product templates currently used in data management. Each template defines the core dataset dimensions and coordinate variables
that structure CDP, offset, angle, shot, streamer, common-offset/common-angle (CoCa), and post-stack data in 2D and 3D, with depth/time variants.

tion, and decision-making across technical and commercial
workflows.

MDIO v1: From files to self-describing datasets
Most seismic digitalization challenges occur in the same area:
geometry and semantics are implicit. In SEG-Y, key concepts such
as dimensionality (2D vs. 3D, post-stack vs. gathers), coordinate
scalars, and navigation are derived from trace-order and header
conventions that vary by project and vendor. This makes auto-
mation fragile and requires every downstream process, analytics,
visualisation, and ML to repeat the same interpretation logic.

An MDIO vl dataset offers a self-describing representation
of seismic data, with explicit structural metadata rather than
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inferred. Each dataset specifies its main dimensions (e.g., cdp,
angle, inline, crossline), along with associated coordinate varia-
bles (e.g., cdp_x, cdp_y, coordinate scalars). The MDIO dataset
framework is defined as a JSON schema, which details coordi-
nates, dimensions, masks, and key survey metadata as separate
arrays. This design allows clear interpretation of survey geometry
and navigation information where applicable. To promote open
and reproducible use, MDIO is released as open-source soft-
ware under the Apache 2.0 licence (Sansal 2025a), along with
cloud-compatible SEG-Y parsing tools (Sansal 2025b). Each
MDIO vl dataset is naturally compatible with the popular Xarray
Python library (Hoyer 2017), enabling access to seismic variables
and coordinates through a well-established third-party tool.



The following example demonstrates interactive access to a
post-stack 3D dataset using the Python MDIO v1 library. Here,
seismic amplitudes are indexed by inline and crossline coordi-
nates and visualised without additional geometry reconstruction.
The dataset provides sel and isel commands to access data
according to coordinate values and logical indexing, respectively.
The result is shown in Figure 2 as a seismic inline sampled from
the Poseidon dataset.

Seismic template definitions

With MDIO v1, specific conventions for JSON-Schema or tem-
plates are designed to support a wide variety of seismic product
types across acquisition, processing, and migration stages. Each
template establishes the dataset’s dimensional structure and
required coordinate variables, offering a standard representation
for common seismic products. These templates form the structur-
al foundation for both data ingestion and downstream use.

At the time of writing, we have ingested petabytes of seismic
data from more than 100,000 individual SEG-Y files into MDIO
vl, covering a wide variety of field data, pre-stack, and post-
stack seismic product types. Due to the large volume of SEG-Y
data, providing a detailed schematisation of the seismic data
was impractical, so that task has been deferred to generative Al
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agents discussed in the next section. The current set of extend-
able seismic templates used in operational data management is
summarised in Table 1. Importantly, because MDIO v1 separates
headers, coordinates, and other data from the traces, these tem-
plates can be refined by editing the dataset without reingestion.

Cloud-scale ingestion benchmarking

Large-scale ingestion of legacy SEG-Y data into MDIO v1 was
benchmarked using source SEG-Y files stored in Amazon S3
(standard storage class). The ingestion workflow is designed
to operate directly on object storage, without modifying or
relocating the source data. Benchmark ingestion and conversion
workflows were executed on c7g.8xlarge instances (32-core AWS
Graviton processors), providing a reproducible and well-defined
compute environment for parallel SEG-Y parsing. The ingestion
process first scans the SEG-Y headers to discover and validate
dataset dimensions, coordinate variables, and associated metadata
required by the schema. This phase extracts geometry informa-
tion without materialising trace data. Second, a write phase
constructs the chunked MDIO vl dataset and writes it directly
to object storage in the MDIO format. Table 2 shows the timing
data for ingesting a collection of post-stack SEG-Y files into
MDIO v1. We find that the end-to-end throughput, including the

® O] O) (GB) (GB)
3188.81 1269 1886 1962.0 1473.2
2 2467.06 997 1440 1524.6 1045.7
3 1696.93 649 1022 1020.6 690.4
4 1157.45 440 698 667.7 436.4
5 811.30 337 462 4997 305.0 Table 2 Benchmark results for ingestion of post-stack

SEG-Y datasets into MDIO v1.

Post-stack Seismic section

2D Pre-stack CDP gathers (offset) Pre-migration —

2D Pre-stack Shot gathers — —

3D Post-stack Seismic volume = =

3D Pre-stack CDP gathers Post-migration Regularised

3D Pre-stack Shot gathers — —

3D Pre-stack CDP gathers Pre-migration Maybe Regularised
OBN Pre-stack Receiver gathers — Non-regularised
OBN Pre-stack Receiver gathers — Partly regular — Pressure
OBN Pre-stack Receiver gathers = Non-regular — 4C
Land Pre-stack Shot gathers — —
Land Pre-stack OVT gathers Post-migration —
Land Pre-stack CDP gathers Post-migration Regularised

Table 3 Canonical seismic product taxonomy used in MDIO v1. The table summarises representative 2D, 3D, marine, land, and OBN products and classifies each by survey

type, processing domain, gather type, migration stage, and regularisation status.
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SEG-Y header scanning and writing, realises high throughput on
the test machine, with linear scaling in wall time with the file
size. We also observe that MDIO provides a consistent lossless
data compression between 25%-39% despite explicitly storing
coordinates and other information in the dataset.

Automated metadata reconstruction for large-
scale SEG-Y ingestion

We aim to ingest a library of more than 1 million SEG-Y files
into the MDIO v1 format. This is addressed through three coupled
metadata reconstruction tasks:

(i) seismic product type identification,

(i1) header field extraction, and

(iii) schema mapping to standardised MDIO v1 fields.

Together, these steps define the minimum requirements for con-
structing MDIO v1 datasets with explicit dimensions, coordinates,
and consistent metadata. The reconstruction process begins with
the identification of the canonical seismic product type, which
determines the dataset’s high-level geophysical structure (e.g.,
2D vs. 3D, pre-stack vs. post-stack, gather organisation). MDIO
vl formalises this classification using a controlled taxonomy
spanning marine, land, and ocean-bottom node (OBN) surveys. A
representative subset of this taxonomy is summarised in Table 3.
SEG-Y text headers contain critical metadata describing
survey geometry, acquisition environment, processing history,
and product semantics. However, these headers are free-form,
inconsistently structured, and weakly standardised, often encod-
ing essential information using non-standardised language and
project-specific conventions. Accurate interpretation, therefore,
typically requires subject-matter expertise (SME). As an exam-
ple, in Table 4, we give an example of information defined in the
text header, and how they inform the MDIO v1 schema.
Moreover, SEG-Y text headers frequently declare custom
header overrides, such as non-standard byte locations for inline
and crossline coordinates, which must be extracted and applied to
correctly interpret trace headers. In addition, the same geophys-
ical concept may be referred to in the text header using multiple

SEG-Y Header Cue MDIO Interpretation

cdp, angle, inline, crossline MDIO dimensions
cdp_x, cdp_y, coordinate_scalar MDIO coordinate fields

LINE = single value
INLINE or XLINE present
SOURCE = VIB/DYNAMITE

"PSDM", "DEPTH MIGRATION”

MDIO: 2D survey
MDIO: 3D survey
MDIO: land acquisition
MDIO: post-migration

“CMP gathers” MDIO: pre-migration
“regularised”, “binned”, MDIO: regularisation flag
“resampled”
PRODUCT keywords MDIO: product_type

classification

Table 4 Mapping of key SEG-Y header cues — primarily from the text and binary
headers — to their corresponding MDIO v1 interpretations.
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different aliases over time (e.g., CDP, CMP, CMP NO.), requiring
normalisation to derive a consistent metadata schema across the
library. At the scale of a library with millions of SEG-Y files,
manual interpretation of text headers is not feasible; an automated
solution guided by subject matter expertise is required to fully
populate.

To address these challenges, we constructed a labelled
training and evaluation dataset derived from 57 manually
interpreted SEG-Y files, each containing full text headers,
binary header information, and SME-validated ground-truth
annotations. Each session included canonical seismic product
type labels, standardised header overrides, and unit defi-
nitions, providing authoritative reference data for product
classification, field extraction, and schema mapping. Although
modest in size, this dataset was intentionally curated to span
heterogeneous acquisition types, processing workflows, and
header conventions, encompassing approximately 800 distinct
metadata labels representative of the broader seismic data
library.

We then developed a multi-agent Al system to perform end-
to-end metadata reconstruction suitable for MDIO vl ingestion.
The system leverages large language models within a structured
pipeline that combines free-text reasoning with explicit domain
constraints derived from SME guidance. All agents were imple-
mented using the Anthropic Claude Sonnet 4 LLM. No model
fine-tuning was performed; performance gains were achieved
through agent decomposition, prompt refinement, rule encoding,
and SME-in-the-loop iteration. The automated pipeline consists
of three primary agents:

1. Template (product type) classification agent — this agent
determines the canonical seismic product type consistent with
the MDIO vl taxonomy. It evaluates structural cues (e.g.,
presence of LINE versus INLINE/XLINE), acquisition indi-
cators (e.g., SOURCE descriptors), and processing descrip-
tions (e.g., migration and regularisation statements). Outputs
are validated using rule-based consistency checks. This step
also includes an additional verification agent to verify the
predicted template class from the classification agent.

2. Field extraction agent — given the selected template, it iden-
tifies relevant metadata fields from SEG-Y text and binary
headers, including field names, byte locations, data types,
and semantic intent. Extracted fields are normalised into
an intermediate representation independent of the original
SEG-Y syntax.

3. Schema mapping agent — this agent maps extracted fields

to standardised MDIO v1 metadata namespaces, resolving
SEG-Y aliases and assigning fields to their appropriate roles
(dimensions, coordinate variables, or auxiliary metadata).
Fields that cannot be mapped unambiguously are explicitly
flagged. This step also includes an additional verification
agent to verify if the mapped alias from the mapping agent
indeed matches the same concept as the extracted field in

SEG-Y data.

Each stage is followed by an automated verification step enforcing
internal consistency, domain constraints, and schema compatibili-
ty. Ambiguous cases and previously unseen patterns were routed
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Figure 3 Conceptual multi-agent workflow for end-to-
end SEG-Y metadata reconstruction.

I ™ S ™ T

Template classification
Field extraction
Field schema mapping

End-to-end extraction and mapping

Table 5 Performance of agentic SEG-Y metadata reconstruction tasks.

through an SME review loop, enabling controlled refinement of
prompts, rules, and schema definitions. A conceptual overview of
this workflow is shown in Figure 3.

The system was evaluated end-to-end on the labelled dataset
across three primary tasks: template classification, field extrac-
tion, and field schema mapping. In Table 5, we show that the
performance was assessed using exact-match accuracy against
SME-validated ground truth. In addition, we report an end-to-end
field extraction and mapping metric, in which a field is consid-
ered correct if and only if it is both successfully extracted and
correctly mapped to the MDIO v1 schema.

These results demonstrate that an agent-based Al system
can interpret heterogeneous SEG-Y headers and reconstruct
standardised metadata at or above human-level accuracy, while
dramatically reducing manual effort. The system achieved low
operational latency and low cost, making it viable for large-scale
migration of seismic archives exceeding one million datasets.
By combining SME knowledge with structured agent reasoning,
the approach enables full end-to-end metadata reconstruction,
transforming implicit SEG-Y information into explicit MDIO v1
datasets with first-class dimensions, coordinates, and standard-
ised metadata.

Interactive analysis framework

Having established standardised, self-describing seismic datasets
through MDIO and agent-driven metadata reconstruction, the
remaining challenge is how this information is accessed and
combined in practice. In subsurface analysis, seismic data is
important, but we also depend on a broader context of well logs,

Identification of canonical seismic product type
Extraction of header fields and attributes
Mapping to MDIO v1 canonical fields

Correct extraction and correct schema mapping

95.00%

99.17% 99.33% 99.50%
98.16% 98.16% 98.16%
96.83% 96.99% 97.16%

technical reports, and commercial and operational records. We
address this by introducing a chat-based analytical interface that
enables natural-language queries to coordinate structured oper-
ations across seismic and related geoscientific and commercial
data sources, without replacing existing systems.

The system is implemented as a hierarchical multi-agent
framework (Google 2025) shown in Figure 4 in which a
root agent interprets user intent and decomposes queries into
explicit, inspectable sub-tasks executed by domain-specific
agents. Each agent encapsulates procedural domain knowledge
and invokes constrained computational tools, such as database
queries, spatial operations, or document retrieval, to ensure
reproducible and consistent results. This architecture supports
multi-step, cross-domain analysis while maintaining transpar-
ency, traceability, and alignment with subject-matter-expert
workflows.

As an example, in Figure 5, a user asks: ‘Find 3D marine seis-
mic surveys in the Gulf of Mexico’. The UI streams information
about agents and tool calls for the user.

The interface responds conversationally by summarising the
results of the query. For example, when asked about available
data, it identifies several 3D marine seismic surveys in the Gulf of
Mexico and presents a short, ranked list (e.g., Survey A, Survey
B), while indicating that additional results are available and can
be explored on request.

‘Of course, I can help with that. I found several 3D marine
seismic surveys in the Gulf of Mexico. Here are a few of them:

* Survey A
e Survey B
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Figure 5 The Ul streams information that allows the user to understand the
reasoning of the multi-agent system. In this case, the system is responding fo a
search request for 3D seismic surveys in the Gulf of Mexico.

There are many more. Please let me know if you would like to
know more about any of these surveys.’

Interactive analysis is driven by a deterministic render-
ing protocol that allows agents to communicate through a
visual medium. By emitting streamed markdown containing
both narrative text and structured code blocks (e.g., Chart.
js), the language model moves beyond text-only responses
to ‘express” via interactive visualidations (Figure 6). This
architecture separates reasoning from execution: the model

Survey Area Comparison - Gulf of Mexico

RESPONSE GENERATION

qs Streture

B FINAL RENDER PREVIEW

Compar
acauisit

of shot intervals for 2D

Figure 4 A hierarchical multi-agent system for
intent decomposition and cross-domain subsurface
analysis.

generates the visual specification, while the interface renders
the final output, ensuring reproducible, interpretable, and
scalable analysis across large geoscientific and commercial
datasets.

High-performance retrieval on seismic
acquisition reports

To enable efficient Retrieval-Augmented Generation (RAG)
(Karpukhin et al., 2020) over a large corpus of seismic acqui-
sition and processing reports, we implemented a semantic
retrieval pipeline based on dense text embeddings using the
Google Gemini
001).

Scaling retrieval-augmented generation (RAG) to large
subsurface archives is constrained by the storage and indexing
cost of high-dimensional embeddings, which can exceed the
size of the original text. We use 3072-dimensional embed-
dings to preserve technical fidelity, exceeding the default
dimensional limits of standard PostgreSQL vector indexing
(PGVector 2025). This is addressed using half-precision vector
quantisation (halfvec) with PGVector, enabling support for
the full embedding dimension while reducing index size
by approximately 50% and improving distance-computation
performance.

embedding model (gemini-embedding-

Figure 6 An auto-generated chart summarising

Survey D

Area (square miles)
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the area of a collection of seismic surveys,

prompt - ‘visualise the survey area” with additional
customisation available through the prompt —
‘Implement a corporate-style blue-grey theme.
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HNSW Recall Heatmap: document_chunks
(Green = High Recall, Red = Low Recall)

What is maximum source volume used in 2D and 3D... 80 90
What was record length for 2D surveys in Brasil... 100 20
What is typical shot spacing for 2D projects wo... 60 80
What is typical shot spacing for 2D projects in... 100 100
What is record length used for 2D projects offs... 100 20
How many 3D vintages or projects are available ... 100 20
Do we have a survey with XXXX cu. in. source ar... 60 80
What was gun type used in seismic acquisition p... 100 70
How many 2D lines are in XXXX project? 100 100
What is average line length in XXXX project? 100 100
Recall@5 Recall@l10

Query Latency Comparison
21 D;cquisition.documentichunks

oron 26x faster 10.0s

Average Latency
Latency

845ms

HNSW Index o o o 04
(halfvec)

Exact Search

(Sequential Scan)

Embeddings are indexed using the Hierarchical Naviga-
ble Small World (HNSW) graph algorithm, selected for its
sub-second query latency and scalability to millions of vectors.
Index parameters were tuned to favour high recall, ensuring
accurate retrieval of domain-specific technical details. Although
retrieval is executed within PostgreSQL, the system implements
a semantic RAG pipeline rather than a Text-to-SQL approach,
retrieving unstructured text fragments based on semantic
similarity. This is well-suited to subsurface reports, where key
technical information is often embedded in narrative text rather
than normalised fields.

Evaluation was performed on a corpus of 1445 seismic acqui-
sition and processing reports using a representative set of ten
domain-specific queries. Retrieval performance was evaluated
using Recall@K, defined as the fraction of top-K chunk results
returned by a halfvec HNSW index that match the top-K results
from an exact full-precision (FP32) exhaustive vector search.
Documents were indexed at the chunk level, with 1000-character
segments and 200-character overlap, yielding 242,312 embed-
dings (approximately 167 chunks per document) and preserving
technical context across segments.

The query set used in the evaluation was constructed to
represent typical subsurface information retrieval tasks:

1. What is the maximum source volume used in 2D and 3D
surveys offshore?
2. What was the record length for 2D surveys in Brazil from

2000 to the present?

Query Index

88
100
02

86 80

82

60
84

Recall (%)

88

40
88
82 20

80

80

Recall@50

Per-Query Latency
(Each point is one question)

P ® Dxact
A HNSW

Figure 7 (fop) Recall statistics for each of the
questions in the acquisition evaluation set. (bottom)
The performance impact of replacing exhaustive
vector scanning with graph-based HNSW indexing at
half precision.

. What is typical shot spacing for 2D projects worldwide?

. What is typical shot spacing for 2D projects in Brazil?

. What is the record length used for 2D projects offshore Canada?
. How many 3D vintages or projects are available in the

AN L AW

Santos Basin?
7. Do we have a survey with XXXX cu. in. source array in our
library?
8. What was the gun type used in seismic acquisition projects?
9. How many 2D lines are in XXXX project?
10. What is the average line length in XXXX project?

As shown in Figure 7, the HNSW half-precision index main-
tains high retrieval fidelity despite aggressive quantisation.
For approximately half of the queries (e.g., Q2, Q4, Q5, Q6,
Q9, Q10), 100% recall was achieved at Recall@5, indicating
that the most relevant document chunks consistently surfaced
among the top results. More abstract or globally scoped queries,
such as worldwide shot spacing (Q3) or specific source-array
configurations (Q7), exhibited lower initial recall (60% at
K=5). However, recall increased substantially to 86-88% at
Recall@50. This behaviour is well aligned with RAG work-
flows, where retrieving relevant context within the top 20-50
chunks is sufficient to fully populate a standard LLM context
window, ensuring that downstream answer generation remains
robust.

Using HNSW half-precision indexing yields a 26x improve-
ment in throughput, reducing average query latency from 21 s
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to 845 ms. As shown in Figure 7 (bottom), HNSW maintains
stable, sub-second latency across all queries, whereas exact
sequential scans exhibit consistently high execution times.
This demonstrates that approximate indexing combined with
half-precision quantisation effectively removes the latency
bottleneck of exhaustive vector scanning, enabling interactive
semantic retrieval over domain-specific acquisition reports at
scale. While vector quantisation and HNSW indexing are well
established in general information retrieval, these results pro-
vide an evaluation of their performance on a subsurface reports
corpus. The observed performance gains and limited impact
on retrieval accuracy support real-time retrieval-augmented
analysis in energy-sector applications.

Conclusions

This work demonstrates that subsurface digitalization can be
advanced by coupling self-describing seismic representations
with tool-augmented, agent-based Al workflows. Together, these
components enable large-scale conversion of legacy SEG-Y
archives into explicit, machine-readable datasets and support
accurate reconstruction of standardised seismic metadata, provid-
ing a practical foundation for scalable analysis and Al-assisted
workflows.

An interactive, agent-based interface brings together seismic
data, acquisition and processing documents, contracts, operational
reports, and related metadata through a deterministic, mark-
down-based protocol that separates language-model reasoning
from data execution. Within this interface, embedding-based
semantic retrieval enables efficient natural-language search over
a corpus of subsurface-specific documents. Benchmarking shows
that half-precision vector quantisation combined with HNSW
indexing delivers substantial reductions in query latency with min-
imal impact on retrieval quality, enabling interactive use at scale.
While these techniques are well established in general information
retrieval, their application and performance characteristics for
subsurface acquisition and processing reports are evaluated here.

78 FIRST BREAK | VOLUME 44 | FEBRUARY 2026

References

Gonzalez, K., Sansal, A., Valenciano, A. and Lasscock, B. [2025]. Well
log foundation model — Making promptable Al models for interpre-
tation. IMAGE 2025, Proceedings.

Gonzalez, K., Sylvester, Z., Valenciano, A. and Lasscock, B. [2024].
From well logs to 3D models: A case study of automated stratigraphic
correlation in the Midland Basin. IMAGE 2024, Proceedings,
10.1190/image2024-4101544.1.

Google. [2025]. Agent Development Kit (ADK) Documentation. Google
Al Retrieved from https://google.github.io/adk-docs/.

Hoyer, S. and Hamman, J. [2017]. Xarray: N-D labeled arrays and
datasets in Python. Journal of Open Research Software, 5(1), 10.
Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen,
D. and Yih, W.-T. [2020]. Dense Passage Retrieval for Open-Do-
main Question Answering. In 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Proceedings,

6769-6781.

Michell, B., Sansal, A., Lasscock, B. and Roberts, M. [2025]. MDIO v1:
Schematizing seismic data for Al and processing. IMAGE 2025,
Proceedings.

PGVector. [2025]. Open-source vector similarity search for Postgres
(Version 0.8.x) [Computer software]. https://github.com/pgvector/
pgvector.

PGVector. [2025]. HNSW index support. GitHub documentation.
https://github.com/pgvector/pgvector?tab=readme-ov-file#hnsw.
Sansal, A. [2025a]. mdio-python: Python library for the MDIO multidi-
mensional energy data format (Version 1.1) GitHub https://github.

com/TGSAI/mdio-python.

Sansal, A. [2025b]. segy: The Ultimate Python SEG-Y I/O with Cloud
Support and Schemas (Version 0.4.1.post2). https://github.com/
TGSAl/segy.

Sansal, A., Lasscock, B. and Valenciano, A. [2023a]. MDIO: Open-source
format for multidimensional energy data. The Leading Edge, 42(7),
465-473.

Sansal, A., Lasscock, B. and Valenciano, A. [2023b]. Integrating energy
datasets: the MDIO format. First Break, 41(10), 69-75.





