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Abstract  

 
The iconic coherence attribute is very useful for geologic feature imaging such as faults, deltas, submarine canyons, 
karst collapse, mass transport complexes, and more.  Besides its preconditioning, the interpretation of discrete 
stratigraphic features on seismic data is also limited by its bandwidth, where in general the data with higher bandwidth 
yields crisper features than data with lower bandwidth.  Some form of spectral balancing applied to the seismic 
amplitude data can help in achieving such an objective, so that coherence run on spectrally balanced seismic data 
yields a better definition of the geologic features of interest.  The quality of the generated coherence attribute is also 
dependent in part on the algorithm employed for its computation. In the eigenstructure decomposition procedure for 
coherence computation, spectral balancing equalizes each contribution to the covariance matrix, and thus yields crisper 
features on coherence displays.  There are other ways to modify the spectrum of the input data in addition to simple 
spectral balancing, including the amplitude-volume technique, taking the derivative of the input amplitude, spectral 
bluing, and thin-bed spectral inversion.  We compare some of those techniques, and show their added value in seismic 
interpretation. We further examine the value of coherence computed from individual spectral voice components, called 
multispectral coherence, as well as coherence computed from azimuth-limited seismic data volumes called 
multiazimuth coherence, both obtained as single volumes for interpretation. 

Introduction  

 

Since its introduction at the 1992 SEG Annual Meeting, the coherence attribute has come a long way.  As an iconic 
attribute, it finds its place in most workstation interpretation software packages, and for good reason. Because three-
dimensionality is an essential ingredient of the coherence volume computation, geologic features that are not easily 
seen on a single slice become much more apparent, with faults, deltas, submarine canyons, karst collapse, mass 
transport complexes, and many other geologic features appearing clearly on coherence displays.   

The interpretation of discrete stratigraphic features on seismic data is limited by its bandwidth.  Seismic data that have 
a higher bandwidth yield crisper and more detailed images than the same data with lower bandwidth.  Some form of 
spectral balancing on the seismic data prior to attribute computation helps in achieving such an objective. If the 
underlying reflectivity can be considered to be random, after spectral balancing, the spectral contributions of the 
seismic wavelet are largely removed, allowing the analysis of tuned reflections that occur at layers exhibiting quarter 
wavelength thickness. Quantitative measurement of such tuning is achieved through different spectral decomposition 
methods (e.g. Partyka et al., 1999; Marfurt and Kirlin, 2001) where one computes a suite of spectral magnitude and 
phase components obtained from the original broadband seismic data.  Less commonly used by interpreters, the 
spectral voice components often provide additional insight into the subsurface features (Chopra and Marfurt, 2016).  
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Going one step further, coherence computed from such spectral voice components can highlight discontinuities that 
are preferentially imaged by a given spectral component.  

Vernengo and Trinchero (2015) described the application of amplitude-volume-technique (AVT) workflow that aids 
seismic interpretation.  It entails the calculation of the root-mean-square (RMS) of the seismic amplitudes in a definite 
analysis window and then rotate the phase of the data by – 90o, by using the mathematical operation of Hilbert 
transform. Such a calculation of the input seismic data yields somewhat higher amplitudes of the frequencies in the 
bandwidth of the data.  We demonstrate the application of the coherence attribute on input seismic data, on the same 
data after spectral balancing, as well as spectral magnitude and voice components obtained after carrying out spectral 
decomposition using continuous wavelet transform approach.  We follow this by including the application of 
coherence attribute on seismic data passed through the AVT workflow, and compare the results.  Finally, we combine 
the coherence computed on different voice components into a single composite image, a process referred to as 
multispectral coherence (Marfurt, 2017), as well as the computation of coherence on seismic data trapped in different 
azimuths, and referred to as multiazimuth coherence. 

Alternative coherence algorithms 

The different coherence algorithms that have been proposed over time are the crosscorrelation-based (Bahorich and 
Farmer, 1995), semblance-based (Marfurt et al., 1998), variance-based coherence (Pepper and Bejarano, 2005), 
eigenstructure-based (Gersztenkorn and Marfurt, 1999), prediction error filter-based (Bednar, 1998) and gradient 
structure tensor-based (Bakker, 2003).  These algorithms vary in how they handle seismic character variability and 
thus have different sensitivities to geology, spectral bandwidth and seismic noise.  Out of these the most common 
algorithms available in workstation software packages are the semblance and some form of eigenstructure 
decomposition.  Here we restrict our analysis to application of energy-ratio coherence, which is based on a variation 
of the eigenstructure approach. 

Integration of coherence and spectral decomposition 

Spectral decomposition 

The process of spectral decomposition decomposes the seismic data into individual frequency components that fall 
within the measured seismic bandwidth, so that subsurface geology can be seen at different frequencies.  This process 
aids the interpretation of discrete stratigraphic features that are limited by both the bandwidth and signal-to-noise ratio 
of the input seismic data.  Tuned seismic reflections that show the maximum amplitudes at quarter wavelength can be 
examined at higher frequencies for better delineation of target zones.  Similarly, while through-going faults may be 
seen at both low and high frequency components, more localized smaller faults may only be seen at the higher 
frequency components. 

Spectral decomposition is carried out by transforming the seismic data from the time domain into the frequency 
domain.  This can be done simply by using the discrete Fourier transform (Partyka et al., 1999; Marfurt and Kirlin, 
2001) with a fixed length short window.  There are other methods that could be used for the purpose, such as the 
continuous wavelet transform (Sinha et al., 2005), the S-transform (Stockwell, 1996), or the matching pursuit 
decomposition (Mallat and Zhang, 1993; Castagna et al., 2003).  Each of these methods have their own applicability 
and limitations, and the choice of a particular method could also depend on the end objective.  The continuous wavelet 
transform depends on the choice of the mother wavelet, and usually yields higher spectral resolution but reduced 
temporal resolution. Using any of the above spectral decomposition methods, the input seismic data volume can be 
decomposed into amplitude and phase volumes at discrete frequencies within the bandwidth of the data. 

The mother wavelet chosen for CWT spectral decomposition, e.g. the Morlet wavelet, is a complex function (Sinha et 
al. 2005), and so the spectral components obtained from CWT are also complex.  Thus, when spectral decomposition 
is carried out on seismic data, it yields the spectral magnitude and phase at each time-frequency sample.  The spectral 
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magnitude represents the square-root of the energy that correlates with the trace, while the spectral phase represents 
the phase rotation between the seismic trace and the Morlet wavelet at each instant of time.   

Voice components 

In addition to the spectral and phase components, Goupillaud et al. (1984) introduced another component, called the 
voice component, which is a simple function of spectral magnitude, am, and phase 𝜙𝑚, at each time-frequency sample  
for trace m and is given by  

𝑎𝑚(𝑡, 𝑓) = 𝑎𝑚(𝑡, 𝑓)exp⁡[−𝑖𝜙𝑚(𝑡, 𝑓)].                  (1)                                                    

The real part of the sum over all frequencies, f, of all these voice components reconstructs the original trace. Since the 
voice components are band-pass filtered versions of the original seismic data (Fahmy et al., 2008) application to map 
subtle hydrocarbon features can be viewed as analysis of the spectral voices. 

After choosing an appropriate mother wavelet (Chopra and Marfurt, 2016) the scaled members of the wavelet family 
are defined by simple scaling and shifting of the mother wavelet.  Crosscorrelating the member wavelets with the 
original seismic trace generates the spectral voice components.  For the continuous wavelet transform, the voice 
components are equivalent to narrow bandpass filtered versions of the input seismic data. 

When the energy-ratio coherence is run on the individual voice components, the time or horizon slices from the 
coherence volume indicate the lineaments in significantly more clarity and definition (Chopra and Marfurt, 2016). 
Three coherence displays that exhibit the lineament definitions better than the others can be blended with three colors 
(red, green and blue) so as to integrate the information in individual datasets for ease in comparison, viewing and 
hence its interpretation (Li and Lu, 2014 and Honorio et al., 2017). Careful examination of the blended images 
quantitatively confirms that different frequencies are more or less sensitive to a different fault. While effective, the 
limitation of this color display tool is that one is limited to showing only three components at a given time. 

Sui et al. (2015) addressed the multispectral coherence analysis problem by constructing a covariance matrix from the 
spectral magnitudes am: 

𝐶𝑚𝑛 = ∑ ∑ ⁡[𝑎(𝑓𝑙 , 𝑡𝑘, 𝑥𝑚 , 𝑦𝑚)𝑎(𝑓𝑙 , 𝑡𝑘, 𝑥𝑛 , 𝑦𝑛)]
𝐾
𝑘=−𝐾

𝐿
𝑙=1 ⁡,      (2) 

where L is the number of spectral components. They found the resulting coherence images to be higher quality than 
that computed from the broadband data, including most of the details seen in coherence computed by constructing 
covariance matrices from the individual magnitude components. By ignoring the phase component, they also found 
that the algorithm was less sensitive to structural dip, resulting in algorithmic simplification. 

Marfurt (2017) built on these ideas, but constructed a multispectral covariance matrix oriented along structural dip 
using the analytic trace, and therefore twice as many sample vectors (i.e. spectral voices and their Hilbert transforms) 

𝐶𝑚𝑛 =∑ ∑ ⁡[𝑢(𝑡𝑘, 𝑓𝑙 , 𝑥𝑚 , 𝑦𝑚)𝑢(𝑡𝑘, 𝑓𝑙 , 𝑥𝑛 , 𝑦𝑛) + 𝑢𝐻(𝑡𝑘, 𝑓𝑙 , 𝑥𝑚, 𝑦𝑚)𝑢
𝐻(𝑡𝑘, 𝑓𝑙 , 𝑥𝑛 , 𝑦𝑛)]

𝐾

𝑘=−𝐾

𝐿

𝑙=1

.⁡⁡⁡(3) 

The corresponding energy ratio coherence computed using this equation is then referred to as multispectral coherence.  

Similar to multispectral coherence procedure, Qi et al. (2017) generate energy ratio coherence by summing J 
covariance matrices C(φj) computed from each of the J azimuthally-sectored data volumes. 

𝐶𝑚𝑢𝑙𝑡𝑖−𝜑 =∑𝑪(𝜑𝑗)

𝐽

𝑗=𝑖
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The covariance matrix obtained by summation has the same size as the original single-azimuth covariance matrix, but 
now has J times as many sample vectors. In this manner, the multiazimuth coherence is computed. Interestingly, the 
eigen decomposition of the multiazimuth covariance matrix is a nonlinear combination of the first eigen vector of the 
azimuthally-limited coherence computations (Qi et al.,2017). But the nonlinear eigen decomposition of the 
multiazimuth covariance matrix has an advantage in that it suppresses the random noise, which is usually there in the 
azimuthally-limited seismic volumes due to the lower foldage of the data. 

Spectral balancing of input seismic data 

Chopra et al., (2011) demonstrated that if the input seismic data are spectrally balanced, or if its frequency bandwidth 
is extended somehow, the resulting volumes could lead to higher discontinuity detail.  Thin-bed spectral inversion 
(Chopra et al., 2006; Chopra et al., 2008) is a process that removes the time-variant wavelet from the seismic data and 
extracts the reflectivity to image thicknesses below seismic resolution using a matching-pursuit variant of sparse-spike 
inversion.  In addition to an enhanced image of thin reservoirs, the frequency-enhanced images have proven useful in 
mapping subtle onlaps and offlaps, thereby facilitating the mapping of parasequences and the direction of sediment 
transport.  Besides viewing the spectrally broadened seismic data in the form of reflectivity, it can be filtered back to 
any desired bandwidth that filter panel tests indicate, adding useful information for interpretational purposes.  
Coherence attribute computation performed on spectrally balanced data yield higher detail about faults and fractures. 

Amplitude volume technique attributes 

Vernengo and Trinchero (2015) described the application of amplitude volume technique (AVT) to seismic data for 
enhancing and focusing the subsurface geologic elements, in terms of faults, unconformities, channel edges and thus 
helping with their interpretation.  The AVT attributes was first proposed by Bulhões (1999) and elaborated upon by 
way of application by Bulhões and de Amorin (2005).  The AVT attribute is obtained by calculating the RMS 
amplitude from the seismic amplitudes in a sliding window down the trace (i.e. calculating the square root of the 
average of the sum of the squares of the amplitudes).  This step is followed by rotating the phase of the data by -90o, 
through the application of Hilbert transform.  The RMS computation (squaring, averaging and taking square root) 
makes all the amplitudes positive, but the nonlinearity introduced therein modifies the frequency spectrum, enhancing 
it at the higher end.  The -90o phase rotation exercised next changes all the amplitudes into positive and negative 
values.   

We demonstrate the application of these methods on different 3D seismic data volumes including the Delaware Basin 
in West Texas, as well as the SCOOP and STACK trends in Oklahoma, US. 

Applications 

In Figure 1 we show the equivalent stratal slices from the input seismic data, the second derivative of amplitude, 
spectral balancing and bandwidth extension using thin-bed reflectivity inversion. We notice more lineament detail on 
each of these derived volumes as shown in Figure 1b to d. In Figure 2 we show a segment of a seismic section from 
the input seismic data and its equivalent AVT section and coherence run on it.  Notice the pseudo-relief introduced in 
the process, which makes the interpretability of the AVT data much better. The seismic data are from the SCOOP 
trend in Oklahoma. 

In Figure 3 we show a comparison of stratal slices from coherence on input data, and coherence on the same data with 
AVT.  We notice that the coherence on AVT shows all discontinuities much better focused.  

In Figure 4, the application of multispectral coherence on seismic data from the Delaware Basin exhibits a cleaner 
look (Figure 4b) than coherence on input seismic data (Figure 4a), and thus the interpretation seems more convenient 
on the former. 
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Finally, in Figure 5 we show a comparison of stratal slices from coherence on input seismic data from the STACK 
trend in Oklahoma, coherence on the individual azimuthal-limited seismic volumes as well as the multiazimuthal 
coherence data. The individual azimuthal-limited coherence volume exhibit low signal-to-noise ratio, but the 
multiazimuthal coherence stands out exhibiting features more well-defined and focused. 

Conclusions 

We have demonstrated the application of coherence attribute on seismic data and its various guises in the form of 
derived data volumes comprising the first derivative, the second derivative, frequency balancing and frequency 
bandwidth extension workflow. In each of these cases the frequency spectra of the input data are modified. On 
comparison of the equivalent stratal slice coherence displays, we infer the following: 

1. If the original data spectrum is biased towards the low part of the spectrum, computing the first or second 
derivatives provides a quick-and-dirty means to approximate spectral balancing. In this case, coherence computed 
on the first and second derivative seismic data volumes exhibit higher lineament detail than just the coherence on 
input seismic data, as will be shown in the presentation. 

2. Extension of frequency bandwidth yields more lineament detail. 

3. Coherence run on input seismic after AVT shows pronounced definition of lineaments and thus could be used in 
their interpretation. 

4. Comparison of multispectral and multiazimuth coherence computed on different versions of the data, with 
coherence computed from the original broadband seismic data shows that both these new processes exhibit more 
focused and distinct lineament detail. 
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Figure 1: Stratal slices just above the Hunton marker through coherence volumes generated from (a) the original 
seismic amplitude data, and the seismic amplitude data after (b) structure-oriented filtering and application of the 
second derivative, (c) spectral balancing, and (d) bandwidth extension using thin-bed reflectivity inversion. Green 
arrows indicate fault details in coherence computed from the second derivative amplitude volume that we interpret to 
be associated with the lower frequencies. (Data courtesy: TGS, Houston) 
 

 
Figure 2: Segment of a (a) seismic section from the input data, and (b) from input data with AVT run on it.  The AVT 
display seems to provide a better guiding interpretation perspective. We use this characteristic for generating 
coherence on AVT-run data and compare it with data without AVT.  Examples from that comparison are shown in 
Figure 3. (Data courtesy: TGS, Houston) 
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Figure 3: Stratal slices just above the Hunton marker through coherence volumes generated from (a) the original 
seismic amplitude data, and the seismic amplitude data after (b) passing it through the AVT workflow. Application of 
AVT shows bigger discontinuities much better focused. (Data courtesy: TGS, Houston) 

 
 

 
 
Figure 4: Equivalent time slices (t=664 ms) through (a) coherence computed from the original “broadband” data, and 
(b) multispectral coherence volumes. The multispectral coherence display depicts clearer and more distinct definition 
of the different features. (c) A chair display showing short segments of the vertical seismic sections corresponding to 
the red dashed lines and the time slice shown in (b). The seismic data shown are from the Delaware Basin in western 
Texas. (Data courtesy of TGS, Houston) 
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Figure 5: Stratal slices 12 ms above a marker at roughly 1950 ms through coherence volumes computed from the six 
azimuthally-limited partial stack amplitude volumes (left), from the full stack volume (top right), and using a 
multiazimuth coherence algorithm (lower right). The definitions of the faults as well as the channels are seen much 
better on the multiazimuth coherence display. The seismic data are from the STACK trend in Oklahoma. (Data 
courtesy: TGS, Houston) 
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