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Summary

Machine Learning (ML) is transforming 3D ultra-high-resolution seismic (UHRS) data processing,
offering faster, consistent, and high-quality results. This study highlights ML applications in denoising,
deghosting, and velocity model building. Tools like RIDNet and Fourier Neural Operator (FNO) deliver
efficiency and accuracy by leveraging supervised learning on high-quality training datasets. RIDNet
excels in tasks such as deghosting, significantly reducing computational demands compared to
traditional inversion methods. Meanwhile, FNO generates high-resolution velocity models with
geological conformity, providing an efficient alternative to Full Waveform Inversion (FWI).

A proof-of-concept demonstrated ML’s ability to integrate multiple processing steps—such as
deghosting, denoising, and demultiple into a single operation, paving the way for near-real-time 3D
fast-track workflows. However, challenges persist, including the need for proprietary training data for
UHRS-specific scenarios. Synthetic datasets offer a promising solution, particularly for velocity
models, though validation for other processing steps is needed.

ML’s efficiency in handling UHRS’s ultra-high-frequency content, combined with its potential to
rethink traditional workflows, positions it as a critical tool for future geophysical applications. By
addressing processing challenges and accelerating timelines, ML enables scalable solutions for
increasingly complex and larger 3D UHRS datasets.
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Accelerating and Enhancing 3D UHRS Data Processing Through Machine Learning Innovations
Introduction

Machine Learning (ML) has gained widespread acceptance in seismic processing and imaging of the
subsurface in the oil and gas sector (Oukili et al., 2023). Its primary advantage lies in significantly faster
processing times compared to traditional geophysical methods. This work explores the application of
ML techniques for 3D ultra-high-resolution seismic (UHRS) data. Beyond accelerating turnaround
times, ML often offers simpler parameterization (no testing) and consistency in quality across surveys.

While turnaround time is often perceived as a minor concern in UHRS processing due to smaller data
volumes, the scale of 3D UHRS surveys has grown significantly. Caselitz et al. (2024) highlighted the
challenge posed by processing data from surveys exceeding 500 sqgkm. Even for 2D or smaller 3D
UHRS surveys, machine learning offers the potential to dramatically accelerate the testing phase, a
common bottleneck that can delay project timelines.

Currently, the main ML applications for UHRS data are in denoising and deghosting. For denoising,
ML eliminates the need for a high-order interpolation process. In deghosting, it resolves challenges
related to unknown (and variable) receiver and source depths. For velocity model building of UHRS
data, ML offers a new opportunity by enhancing the resolution and accuracy of velocity models,
achieving results unattainable with traditional velocity picking or tomographic methods. These high-
resolution models could provide insights for soil interpretation and input to future stratigraphic
inversion works.

ML technology proves highly effective in overcoming the challenges associated with 3D UHRS data.
It delivers high-quality outputs and ensures timely production of the results, making it a valuable
addition to the seismic processing toolkit. This technology should also provide opportunities to rethink
data processing by combining multiple processing steps into one.

Methods

The ML methods employed in this study are all supervised and depend on high-quality training data to
ensure optimal output. Figure 1 illustrates the supervised learning workflow. The steps in the green box
cover the machine learning model generation, an essential foundation for accurate predictions.
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Figure 1: Supervised learning workflow diagram. The green box highlights the model generation part
of the workflow.
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We utilized the RIDNet Deep Neural Network (DNN), as detailed by Farmani et al. (2023), and the
Fourier Neural Operator (FNO), described by Crawley et al. (2023). RIDNet excels in signal processing
tasks such as denoising and deghosting, while FNO has shown its capability to build velocity models
in complex geological settings, including salt provinces. This study marks the first application of FNO
to UHRS data. The technique has demonstrated its ability to produce very high-resolution velocity
models on conventional seismic data, comparable to high-resolution Full Waveform Inversion (FWI)
models but with significantly reduced turnaround times. RIDNet is widely used in production settings
for denoising and receiver deghosting of UHRS data, with networks trained for each specific UHR
project. Conversely, FNO operators are derived from extensive synthetic datasets representing diverse
geological and acquisition scenarios. For this study, the FNO method was tested on UHRS data using
operators trained exclusively on conventional seismic setups. A new model incorporating synthetic data
reflecting 3D UHRS acquisition geometries and near-surface geological settings is planned for future
developments.

Other machine learning applications are used in the UHRS processing sequence such as U-Net CNN to
attenuate post-migration noise. A similar ML algorithm separates reflections from diffractions helping
at identify hazardous objects such as boulders.

Examples

The first application example focuses on receiver deghosting. Due to the significant uncertainty in
UHRS streamer depth, geophysical deghosting techniques must be inversion-based and include receiver
depth estimation steps. The method described by Bekara ef al. (2024) achieves high-quality results but
demands substantial computational resources. A faster alternative is the RIDNet DNN, trained using the
inputs and outputs of inversion-based geophysical deghosting applied to one acquisition sequence. Once
trained, this model processes all sequences much faster than geophysical methods. Figure 2 compares
2D stack of receiver deghosting using geophysical and ML methods, showing that both achieve high-
quality results, but ML operates significantly faster. The line shown is a QC line not used to train the
ML model.
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Figure 2: 2d stack comparison QC. Input to receiver deghosting (left), inversion deghosting (center),
ML deghosting (vight). Both methods produce a high-quality output.
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The second application involves velocity model derivation. As noted earlier, the trained model used
here was generated using synthetic data from 15 Hz RTM angle gathers with typical oil and gas
acquisition geometries and geological settings. Although this model does not specifically account for
UHRS acquisition configurations and near-surface geological settings, it successfully produces a
velocity model (in m/s) showing geological conformity. Figure 3 displays the initial and ML velocity
model overlaid on their respective migrated stack. The migrated images are similar, but the ML velocity
model has much higher resolution highlighting shallow channels filled with slower velocity sediments.
This demonstrates ML’s potential to build ultra-high-resolution models efficiently, providing a
computationally efficient alternative to high frequency full waveform inversion (FWI).
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Figure 3: Migrated stack with overlaid velocity model (m/s) — Initial model and stack (left), ML model
and stack (vight). The ML algorithm is able to capture low velocity related to shallow channels just
beneath the seabed.

The final example highlights broader applications of ML. Unlike traditional workflows, where separate
processes handle individual processing steps, this ML approach integrates multiple processes into a
single operation. Figure 4 illustrates a proof-of-concept for a “one-pass” ML-based post-stack process,
applied to a raw stack with statics and NMO corrections. The ML solution is evaluated against the
conventional workflow where denoise, deghosting, designature and demultiple are applied pre-stack.
The displayed line is a verification line excluded from the ML model's training data. A RIDNet DNN
model was trained on stacks to simultaneously perform deghosting, designature, denoising, and
demultiple corrections. While it is likely that the current result could be substantially improved, this
proof-of-concept demonstrates ML’s ability to transform seismic data processing. It could enable
efficient workflows by generating inputs for post-stack migration in near-real time, offering 3D ultra-
fast-track products within hours instead of days.

Conclusions

Machine learning methods can revolutionize UHRS data processing, offering the ability to deliver high-
quality results quickly. Applications like denoising and deghosting are already widely adopted in
production workflows. However, a significant challenge is the need for training datasets derived from
geophysical methods applied to real UHRS data. Since these projects are proprietary, training must be
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conducted for each production project, as data cannot be reused to train generic models without data
owner consent. Experience indicates that building the ML model adds little to project turnaround, since
it requires only a small training dataset. An alternative is to use synthetic datasets, as demonstrated with
the velocity model FNO method, though this approach has not yet been validated for processing steps
such a deghosting. Machine learning also introduces novel possibilities, such as combining multiple
processing steps into a single workflow, enabling 3D UHRS data processing to be conducted with time
efficiency. Additionally, ML methods are particularly adept at handling the ultra-high-frequency content
of UHRS data, which often demands substantial computing resources when processed using
conventional geophysical techniques.

Raw stack Pre-stack processed stack Post-stack ML

,| I |r'r.‘. ol
ll |

\
It : Aft
:‘{ i ?}{‘)i it
! f' Mﬂm
Figure 4: Unmigrated stack comparison QC. Raw stack (left), pre-stack processed stack (center), post-

stack ML (vight). The ML solution provides a better signal-to-noise ratio but leaves more multiples
energy.
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