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Summary 
 
Machine Learning (ML) is transforming 3D ultra-high-resolution seismic (UHRS) data processing, 

offering faster, consistent, and high-quality results. This study highlights ML applications in denoising, 

deghosting, and velocity model building. Tools like RIDNet and Fourier Neural Operator (FNO) deliver 

efficiency and accuracy by leveraging supervised learning on high-quality training datasets. RIDNet 

excels in tasks such as deghosting, significantly reducing computational demands compared to 

traditional inversion methods. Meanwhile, FNO generates high-resolution velocity models with 

geological conformity, providing an efficient alternative to Full Waveform Inversion (FWI). 

A proof-of-concept demonstrated ML’s ability to integrate multiple processing steps—such as 

deghosting, denoising, and demultiple into a single operation, paving the way for near-real-time 3D 

fast-track workflows. However, challenges persist, including the need for proprietary training data for 

UHRS-specific scenarios. Synthetic datasets offer a promising solution, particularly for velocity 

models, though validation for other processing steps is needed. 

ML’s efficiency in handling UHRS’s ultra-high-frequency content, combined with its potential to 

rethink traditional workflows, positions it as a critical tool for future geophysical applications. By 

addressing processing challenges and accelerating timelines, ML enables scalable solutions for 

increasingly complex and larger 3D UHRS datasets. 
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Introduction 

Machine Learning (ML) has gained widespread acceptance in seismic processing and imaging of the 

subsurface in the oil and gas sector (Oukili et al., 2023). Its primary advantage lies in significantly faster 

processing times compared to traditional geophysical methods. This work explores the application of 

ML techniques for 3D ultra-high-resolution seismic (UHRS) data. Beyond accelerating turnaround 

times, ML often offers simpler parameterization (no testing) and consistency in quality across surveys. 

While turnaround time is often perceived as a minor concern in UHRS processing due to smaller data 

volumes, the scale of 3D UHRS surveys has grown significantly. Caselitz et al. (2024) highlighted the 

challenge posed by processing data from surveys exceeding 500 sqkm. Even for 2D or smaller 3D 

UHRS surveys, machine learning offers the potential to dramatically accelerate the testing phase, a 

common bottleneck that can delay project timelines. 

Currently, the main ML applications for UHRS data are in denoising and deghosting. For denoising, 

ML eliminates the need for a high-order interpolation process. In deghosting, it resolves challenges 

related to unknown (and variable) receiver and source depths. For velocity model building of UHRS 

data, ML offers a new opportunity by enhancing the resolution and accuracy of velocity models, 

achieving results unattainable with traditional velocity picking or tomographic methods. These high-

resolution models could provide insights for soil interpretation and input to future stratigraphic 

inversion works. 

ML technology proves highly effective in overcoming the challenges associated with 3D UHRS data. 

It delivers high-quality outputs and ensures timely production of the results, making it a valuable 

addition to the seismic processing toolkit. This technology should also provide opportunities to rethink 

data processing by combining multiple processing steps into one. 

Methods 

The ML methods employed in this study are all supervised and depend on high-quality training data to 

ensure optimal output. Figure 1 illustrates the supervised learning workflow. The steps in the green box 

cover the machine learning model generation, an essential foundation for accurate predictions.  

 

Figure 1: Supervised learning workflow diagram. The green box highlights the model generation part 

of the workflow.  
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We utilized the RIDNet Deep Neural Network (DNN), as detailed by Farmani et al. (2023), and the 

Fourier Neural Operator (FNO), described by Crawley et al. (2023). RIDNet excels in signal processing 

tasks such as denoising and deghosting, while FNO has shown its capability to build velocity models 

in complex geological settings, including salt provinces. This study marks the first application of FNO 

to UHRS data. The technique has demonstrated its ability to produce very high-resolution velocity 

models on conventional seismic data, comparable to high-resolution Full Waveform Inversion (FWI) 

models but with significantly reduced turnaround times. RIDNet is widely used in production settings 

for denoising and receiver deghosting of UHRS data, with networks trained for each specific UHR 

project. Conversely, FNO operators are derived from extensive synthetic datasets representing diverse 

geological and acquisition scenarios. For this study, the FNO method was tested on UHRS data using 

operators trained exclusively on conventional seismic setups. A new model incorporating synthetic data 

reflecting 3D UHRS acquisition geometries and near-surface geological settings is planned for future 

developments. 

Other machine learning applications are used in the UHRS processing sequence such as U-Net CNN to 

attenuate post-migration noise. A similar ML algorithm separates reflections from diffractions helping 

at identify hazardous objects such as boulders. 

Examples 

The first application example focuses on receiver deghosting. Due to the significant uncertainty in 

UHRS streamer depth, geophysical deghosting techniques must be inversion-based and include receiver 

depth estimation steps. The method described by Bekara et al. (2024) achieves high-quality results but 

demands substantial computational resources. A faster alternative is the RIDNet DNN, trained using the 

inputs and outputs of inversion-based geophysical deghosting applied to one acquisition sequence. Once 

trained, this model processes all sequences much faster than geophysical methods. Figure 2 compares 

2D stack of receiver deghosting using geophysical and ML methods, showing that both achieve high-

quality results, but ML operates significantly faster. The line shown is a QC line not used to train the 

ML model. 

 

Figure 2: 2d stack comparison QC. Input to receiver deghosting (left), inversion deghosting (center), 

ML deghosting (right). Both methods produce a high-quality output. 
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The second application involves velocity model derivation. As noted earlier, the trained model used 

here was generated using synthetic data from 15 Hz RTM angle gathers with typical oil and gas 

acquisition geometries and geological settings. Although this model does not specifically account for 

UHRS acquisition configurations and near-surface geological settings, it successfully produces a 

velocity model (in m/s) showing geological conformity. Figure 3 displays the initial and ML velocity 

model overlaid on their respective migrated stack. The migrated images are similar, but the ML velocity 

model has much higher resolution highlighting shallow channels filled with slower velocity sediments. 

This demonstrates ML’s potential to build ultra-high-resolution models efficiently, providing a 

computationally efficient alternative to high frequency full waveform inversion (FWI). 

 

Figure 3: Migrated stack with overlaid velocity model (m/s) – Initial model and stack (left), ML model 

and stack (right). The ML algorithm is able to capture low velocity related to shallow channels just 

beneath the seabed. 

The final example highlights broader applications of ML. Unlike traditional workflows, where separate 

processes handle individual processing steps, this ML approach integrates multiple processes into a 

single operation. Figure 4 illustrates a proof-of-concept for a “one-pass” ML-based post-stack process, 

applied to a raw stack with statics and NMO corrections. The ML solution is evaluated against the 

conventional workflow where denoise, deghosting, designature and demultiple are applied pre-stack. 

The displayed line is a verification line excluded from the ML model's training data. A RIDNet DNN 

model was trained on stacks to simultaneously perform deghosting, designature, denoising, and 

demultiple corrections. While it is likely that the current result could be substantially improved, this 

proof-of-concept demonstrates ML’s ability to transform seismic data processing. It could enable 

efficient workflows by generating inputs for post-stack migration in near-real time, offering 3D ultra-

fast-track products within hours instead of days. 

Conclusions 

Machine learning methods can revolutionize UHRS data processing, offering the ability to deliver high-

quality results quickly. Applications like denoising and deghosting are already widely adopted in 

production workflows. However, a significant challenge is the need for training datasets derived from 

geophysical methods applied to real UHRS data. Since these projects are proprietary, training must be 
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conducted for each production project, as data cannot be reused to train generic models without data 

owner consent. Experience indicates that building the ML model adds little to project turnaround, since 

it requires only a small training dataset. An alternative is to use synthetic datasets, as demonstrated with 

the velocity model FNO method, though this approach has not yet been validated for processing steps 

such a deghosting. Machine learning also introduces novel possibilities, such as combining multiple 

processing steps into a single workflow, enabling 3D UHRS data processing to be conducted with time 

efficiency. Additionally, ML methods are particularly adept at handling the ultra-high-frequency content 

of UHRS data, which often demands substantial computing resources when processed using 

conventional geophysical techniques. 

 

Figure 4: Unmigrated stack comparison QC. Raw stack (left), pre-stack processed stack (center), post-

stack ML (right). The ML solution provides a better signal-to-noise ratio but leaves more multiples 

energy. 
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