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Summary 
 
3D Seismic Foundation Models (SFMs) have been scaled to 1.8 billion parameters, pushing the 

boundaries of AI-driven seismic analysis. This work employs Vision Transformers (ViTs) augmented 

with multi-dimensional rotary positional embeddings and FlashAttention-2 to efficiently handle larger 

3D spatial contexts. Pretraining was conducted on 20 terabytes of seismic data spanning 444,000 km² 

using a Masked Autoencoder (MAE) approach for self-supervised learning. Drawing on advancements 

in large model optimization, including key/query normalization and mixed precision techniques, the 

models achieved state-of-the-art generalization for salt segmentation tasks, with mean Intersection over 

Union (IoU) scores exceeding 0.9 across unseen datasets. Memory consumption analysis reveals a log-

linear scaling relationship between model size, context size, and memory requirements. These 

advancements showcase the transformative potential of scaled SFMs in geophysical interpretation. 
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Introduction 

 

Foundation models are transforming artificial intelligence with their ability to perform various 

downstream tasks with minimal fine-tuning. These models learn generalized representations that 

transfer across tasks and domains by pretraining on massive datasets. While the idea of a foundation 

model has revolutionized natural language processing, computer vision, and multimodal AI, the seismic 

industry has yet to explore its potential.  

 

Scaling laws provide a framework to estimate the relationship between dataset size, model size, and 

compute resources required for optimal performance in AI models. These laws are well established in 

natural language (Hoffmann et al., 2022) and natural images (Zhai et al., 2022). However, their 

application to scientific data remains largely unexplored. While Sheng et al. (2023), Lasscock et al. 

(2024), and Gao et al. (2024) have investigated seismic foundation models (SFM) and downstream 

tasks, these efforts were conducted at a relatively small scale.  
 

This paper presents results from a large 1.8 billion-parameter 3D SFM trained on a large seismic dataset 

and discusses the practical considerations for training this model. We also address context size, which 

relates to the size of the 3D data the model can process. We provide details on how a large context 

model can be efficiently fine-tuned. The SFM generalization performance was benchmarked on the 

downstream task of salt segmentation on a hold-out dataset. The intersection over union (IoU) scores 

are compared to those of previous supervised studies by Roberts et al. (2024). 

 

Dataset 

 

The SFM was pre-trained using depth-migrated seismic data covering a surface area of 444,000 km2 

(20 terabytes size). We use non-overlapping 512³ data cubes, which yield 54,000 unique seismic 

samples. This is equivalent to 1.8 billion unique visual tokens, each sized at 8x8x64 pixels in the inline, 

crossline, and depth dimensions. This dataset is intended to provide global geologic context, giving the 

pre-trained SFM the greatest capacity for generalization on various downstream tasks. 

 

Method 

 

We utilize the self-supervised learning approach of Masked AutoEncoder (MAE) (He et al., 2022) and 

adapt to the seismic by tokenizing the data in the 3D image domain. Vision Transformer (ViT) backbone 

provides simplicity, excellent scaling properties, and robust modeling capabilities. The MAE masking 

minimizes pre-training and fine-tuning memory requirements, allowing larger models and context sizes. 

The pre-training memory requirement was further reduced by using automatic mixed precision, data 

parallelism, and the level two Zero Redundancy Optimizer (ZeRO) (Rajbhandari et al., 2020). 

 

The first architectural modification is augmenting the tokenization and positional embeddings of the 

encoder/decoder models to process 3D data. Feichtenhofer et al. (2022) show that increasing the 

masking ratio can improve efficiency in spatiotemporal tasks. We follow the same approach and observe 

excellent reconstruction of 3D seismic images from 10% of the visible data (Figure 1). Second, we 

replace the positional embedding with Rotary Positional Embedding (RoPE) (Su et al., 2024). 

Empirical studies show that RoPE performs equally or better than fixed sinusoidal positional 

embeddings. This is due to smoother positions in sequences achieved by applying positional encoding 

using a rotation matrix and the introduction of relative positional information. Our contribution here is 

to integrate multi-dimensional RoPE with the masking process of MAE and FlashAttention-2 (Dao, 

2023).  We use FlashAttention-2 to improve compute performance and reduce memory usage. Without 

FlashAttention-2 memory usage in training and inference would be a quadratic function of the number 
of input tokens. We apply position interpolation to RoPE to increase the context size via fine-tuning 
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(Chen et al., 2023). In addition to these significant architectural improvements, we also applied small 

architectural changes (Dehghani et al., 2023), like key/query normalization. 

 

 
Figure 1. A sample of 640x640x1024 data and its reconstruction. (a-c) Mid-inline slice shows the 
original data, the data used input to reconstruction, and the reconstruction result. (d-f) and (g-i) show 

the equivalent crossline and depth slices, respectively. 
 

  
Figure 2. Memory consumption of SFM versus parameter count and context size. 

 

Combining all the described transformer advancements, we can train memory and compute efficient 3D 

ViTs. We use the ViT naming and parameter convention: base (B), huge (H), and giant (G). SFM-B has 

115 million, SFM-H has 660 million, and SFM-G has 1.8 billion trainable parameters. Figure 2 provides 

memory consumption as a function of model size and context size. When small contexts are excluded, 

we observe that the scaling relationship is log-linear. Memory consumption is significantly increased if 

we want to train very large contexts. Hence, we pre-train with smaller context and fine-tune to larger 

context. The figure extrapolates our measurements to even larger context sizes to estimate GPU resource 

requirements. The black dotted line represents a single A100/H100 memory limit (80GB). 

 

Zhai et al. (2022) demonstrated that increasing dataset and model size improves vision models’ task 

performance. Larger models consistently exhibit better few-shot learning capabilities, even when 

trained on smaller datasets. Our preference is for a larger model with a large context size. Based on this 

understanding, we decided to pre-train a 1.8 billion-parameter ViT-G model with a context size of 5123 
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(32k tokens) and fine-tune it to an even larger 640x640x1024 cube (102k tokens). This study used a 

cluster of H100 GPUs and stored seismic data in MDIO format (Sansal et al., 2023) for efficient training 

and compute utilization. 

 

Based on the findings of Roberts et al. (2024), we expect that a larger context enables segmenting larger 

objects more accurately, it reduces post-processing efforts and achieves more structurally continuous 

results. When training for this salt segmentation task we froze the encoder weights and initiated a new 

transformer decoder. We trained the salt segmentation models using the salt interpretation dataset 

previously utilized to train U-Net models in 2D and 3D, as described by Roberts et al. (2024) and 

Warren et al. (2023). The dataset comprises salt annotations from 23 RTM stacks in the Gulf of Mexico 

and South America for training. We added an interpreted RTM stack from South America for out-of-

distribution testing and to measure the IoU metric evaluating the model's performance.  

 

Results 

 

The withheld stack from offshore South America was not included in pre-training and salt segmentation 
training to compare performance like our previous studies. The observed IoU values exceed 0.9 on the 

holdout dataset. Sections of the ground truth and predictions are illustrated in Figure 3. 

 

   
Figure 3. Seismic and masks for inline and crossline sections for the held-out dataset. The second row 

in blue shows the ground truth labels, while the first row in red shows the predictions.  
 

Conclusions 

 

Our study describes the intricacies of scaling the SFM to achieve state-of-the-art performance. It 

highlights the advancements that made it possible to pretrain a 1.8 billion parameter model, with a large 

context size, on a global seismic dataset. The MAE pre-training objective effectively reconstructs fine 

geological details from sparse inputs, showcasing its power in handling 3D seismic data. Achieving an 
IoU of 0.9 on held-out South American data, the salt segmentation task model demonstrates exceptional 

generalization to unseen data. The IoU performance aligns with state-of-the-art CNN-based supervised 

approaches with better generalization. Our advancements and insights in memory efficient training pave 

the way forward for scaling SFMs with more data and more parameters as AI training hardware 

improves.  
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