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Summary 
 
Least-squares imaging in image domain utilizes Point Spread Functions (PSFs) to estimate the Hessian 

matrix. The conventional way to compute PSFs involves cascaded operations -modelling followed by 

migration. In this paper, we propose a least-squares Kirchhoff imaging method in which the PSFs are 

computed explicitly with a simplified formula and then reshaped with the Kirchhoff image. A 

preconditioned iterative conjugate solver is chosen for the inversion as the final step of the least-squares 

imaging. The field example demonstrates the improvements in image resolution and clarity with the 

proposed method. 
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Introduction 

 

Least-squares Kirchhoff imaging remains essential as it provides a robust and effective method for 

reconstructing high-resolution subsurface images from seismic data, particularly in complex geological 

environments. Image-domain least-squares imaging often utilizes Point Spread Functions (PSF) to 

compute the Hessian matrix, which is applied to deblur the conventional migrated image (e.g., Schuster 

and Hu, 2000). This process typically involves a cascaded application of modeling and migration. 

The standard seismic image, m0, is generated by depth migrating the acquired seismic data:  

                                                

                                                                𝑚0 = 𝐿𝑇𝑑 = 𝐿𝑇𝐿𝑚,                                                              (1) 

 

where d is the seismic data, LT is the migration operator, m is the reflectivity model of the earth and   

H= LTL is the Hessian matrix.  

Since the Hessian matrix is not unitary, the migrated image represents a blurred version of the true 

reflectivity rather than the reflectivity itself. Image-domain least-squares imaging addresses this by 

solving for the true reflectivity, 𝑚, using the following linear equation: 

 

                                                                 𝐻𝑚 = 𝑚0,                                                                            (2) 

                                                                  

where H is typically computed as the Point Spread Function (PSF) by performing the modeling 

operation followed by the migration operation at discrete locations. (Fletcher et al., 2016).  

 

The computation of the Hessian involves two operations: modeling and migration, which can be 

computationally expensive. To improve the efficiency of this process, researchers have developed one-

operation approaches. For example, Xu et al. (2022) derived a PSF formula based on the WKBJ 

approximation for Least-Squares Reverse Time Migration (LSRTM). Similarly, Lund et al. (2022) 

proposed an analytical PSF computation method for Kirchhoff least-squares imaging. Compared to the 

conventional method of computing PSFs through a modeling operation followed by a migration 

operation, these one-operation approaches are significantly more computationally efficient.  In this 

paper, we propose an efficient image-domain least-squares Kirchhoff imaging method. First, we 

compute PSFs using a simplified true-amplitude Kirchhoff formula. Next, we reshape the wavenumber 

spectra of the computed PSFs to match the migrated image. Finally, we iteratively invert for the 

reflectivity using a preconditioned system.  

 

The simplified PSF formula 

 

For a scatterer located at xc in the subsurface, the seismic signal 𝛹, which originates from a source at 

location xs, scatters at xc, and is recorded at a receiver at xr can be expressed as: 

           

                                           𝛹(𝑡) = 𝑠(𝑡 − (𝑡𝑠 + 𝑡𝑟))𝐴(𝑥𝑠, 𝑥𝑐)𝐴(𝑥𝑐 , 𝑥𝑟),                                             (3) 

 

where  𝑠 is the source wavelet, A(xs, xc) is the amplitude of the Green’s function from the source to the 

scatterer, A(xc, xr) from the scatterer to the receiver, 𝑡𝑠 and  𝑡𝑟 are the travel-times from the source to 

the scatterer and from the scatterer to the receiver respectively. 

                                         

The true amplitude Kirchhoff migration (Albertin et al. 1999) is expressed as: 

 

                                         𝑟(𝑥) =  ∑
𝑓𝑖(𝑥)

𝑛(𝜐𝑖)𝑖 ,                                                                                            (4) 

                                         𝑓𝑖(𝑥) = −
1

4𝜋2

𝑝(𝑥)

𝐴(𝑥𝑠,𝑥)𝐴(𝑥,𝑥𝑟)

𝜕

𝜕𝑡
𝛹 ∗ Δ(𝑡),                                                       (5) 

 

where p(x) is the slowness at x, n is the hit count in subsurface illumination angle bin 𝜐𝑖 and Δ(𝑡) is the 

delta function. In the vicinity of the scatterer with 𝑥 ≈ 𝑥𝑐, the amplitude of the Green’s functions in 

equation (5) can be approximated with that at xc and equation (5) becomes: 
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                                           𝑓𝑖(𝑥) ≈ −
1

4𝜋2

𝑝(𝑥)

𝐴(𝑥𝑠,𝑥𝑐)𝐴(𝑥𝑐,𝑥𝑟)

𝜕

𝜕𝑡
𝛹 ∗ Δ(𝑡).                                                                    (6) 

 

Combining equations (4), (5) and (6) we get the simplified PSF formula: 

 

                                          𝐻 = −
1

4𝜋2
∑

𝑝(𝑥)

𝑛(𝜐𝑖)𝑖
𝜕

𝜕𝑡
 𝑠(𝑡 − (𝑡𝑠 + 𝑡𝑟)) ∗  Δ(𝑡).                                           (7)                      

 

Equation (7) offers an efficient method for computing the PSF directly, eliminating the need for 

cascaded modeling and migration operations. Lund et al. (2022) also developed an explicit Kirchhoff 

PSF formula, which includes more terms compared to Equation (7). 

 

It is important to note that Equation (7) is derived without making any assumptions about the acquisition 

geometry. As a result, it can be used to compute PSFs for any type of acquisition, whether land or 

marine, including streamers or OBN. Furthermore, it does not require any additional processing, such 

as data regularization, to generate true-amplitude PSFs. 

 

Reshaping the Hessian 

While the modeling operation is not required to compute the Kirchhoff PSF, we derive the PSF formula 

(Equation 7) from the modeling equation (Equation 3). However, like other ray-based algorithms, 

Equation 3 is unable to accurately model wave propagation in complex earth media. In fact, even with 

advanced wave equation-based methods, accurately modeling the wavefield remains a challenge. 

 

For instance, as seismic waves propagate through the earth, some of their energy is absorbed or 

attenuated due to intrinsic and scattering attenuation. Intrinsic attenuation is frequency-dependent, 

while scattering attenuation depends on both frequency and the size of the scatterers, such as cracks and 

inclusions in the earth. Techniques like Q tomography and Q compensation (Valenciano and 

Chemingui, 2013) have been widely used to enhance seismic image quality.  Despite these efforts, the 

spectra of seismic images often vary from shallow to deep regions. One reason for this is the difficulty 

in obtaining an accurate Q model. Additionally, scattering attenuation is not typically accounted for due 

to the challenges in estimating it. Finally, even with a precise Q model, seismic signals attenuated below 

the noise level cannot be recovered.   In our approach, we do not include Q in the computation of the 

Hessian. Therefore, the PSFs computed using equation (7) do not capture the spectral properties of the 

true Hessian. Including Q in this process may make the computed PSFs closer to the true Hessian, but 

it will increase the cost. On the other hand, the seismic image contains information that can be injected 

into the PSFs. Specifically, the wave number spectra in the seismic image can be used to reshape the 

computed PSFs: 
 

                                                             𝐻𝑠 = 𝑅(𝐻, 𝑚0),                                                                        (8) 

where 𝑅 represents the reshaping operation. The computed PSFs are reshaped in the wavenumber 

domain and then transformed back to the spatial domain. The rationale is that, if the modeling and 

migration are done accurately, the computed PSF and the seismic image should have similar 

wavenumber spectra.  

 

Iterative inversion 

The Hessian matrix is symmetric.  An iterative conjugate gradient solver is chosen to solve the linear 

system of equations in (2). Due to the presence of noise, regularization or preconditioning is often 

applied to the linear system. The application of a preconditioner results in 

                                                        𝑃𝑚0 = 𝑃𝐻𝑠𝑚,                                                                               (9) 

 

where P is the preconditioner and 𝐻𝑠 is the computed and reshaped Hessian matrix. The preconditioning 

operation can be as simple as a diagonal scaling (Jacobi preconditioning), though one that incorporates 

structural information is preferred. 
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Field example 

We applied the proposed least-squares imaging method to a deep-water streamer dataset from the 

Campos Basin offshore Brazil. The narrow-azimuth streamer acquisition utilized 8 km streamers. PSFs 

were computed and reshaped for all offsets (Fig. 1). The input Kirchhoff offset gathers were muted to 

remove refracted and post-critical angle energy. Compared to the Kirchhoff offset gathers (Fig. 2, left), 

the least-squares gathers (Fig. 2, right) provide higher resolution and a better signal-to-noise ratio. Thin 

layers that appear with low wavenumber in the Kirchhoff gathers (Fig. 2, left) are more clearly defined 

in the least-squares gathers (Fig. 2, right). The vertical section of the least-squares image (Fig. 3, middle) 

offers higher resolution and clearer fault imaging compared to the Kirchhoff image (Fig. 3, left). The 

least-squares image also yields a broader bandwidth (Fig. 3, right). The depth slice of the least-squares 

image demonstrates higher horizontal resolution and improved image clarity (Fig. 4, right), overall 

outperforming the Kirchhoff image (Fig. 4, left). 

 

 

Figure 1 The offset PSF gather computed with equation (7) (left) and the reshaped gather (right) at 

one common midpoint. The vertical axis is depth, and the horizontal axis is offset. 

 

 
 

Figure 2 Pre-salt Kirchhoff offset gathers (left) vs. least-squares Kirchhoff gathers (right). The depth 

range is 6100 -- 8300 m. 

Conclusions 

In this paper, we derive a simplified formula for computing Kirchhoff PSFs. The simplicity of the 

formula makes PSF computation cost-effective and applicable to data from any acquisition geometry. 

The computed PSFs are reshaped using the seismic image’s wavenumber spectra, resulting in an 

accurate Hessian matrix. A preconditioned conjugate gradient solver is employed for the least-squares 

inversion. The field example demonstrates significant improvements in image resolution and clarity. 
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Figure 3 Comparison of vertical sections: the Kirchhoff stack image (left) vs. the least-squares 

Kirchhoff stack (middle). The right plot shows the spectra, of which the green is least-squares image, 

and the blue is Kirchhoff.  The depth range is 3000 – 4500 m. 

 

 

Figure 4 Legacy Kirchhoff stack depth slice (left) and Least-squares Kirchhoff stack depth slice (right) 

at depth 3100 m. 
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