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Abstract
Seismic impedance inversion is an important tool for estimating rock and reservoir properties from the seismic data. Seismic 
data is band-limited in nature and lacks the low-frequency component. As the low-frequency component holds the basic 
information on geological structure, the lack of low-frequency information degrades the quantitative prediction based on 
seismic inversion. It is therefore essential to build an accurate low-frequency model to have confidence in seismic inversion 
and in turn on the quantitative predictions made therefrom.
In this paper, we develop a novel workflow of predicting the low-frequency impedance model that uses a single-well low-
frequency model apart from other relevant seismic attributes in the multi-attribute regression analysis. The workflow was 
successfully applied to a number of impedance inversion exercises out of which two cases are discussed here. Our inversion 
exercises were carried out on datasets from northeastern British Columbia and Alberta, in Canada. The inversion results 
using this approach have been validated at blind well locations and an excellent match between well logs and inversion 
results has been observed.

Introduction
Impedance inversion of seismic data is a standard tool for 
estimating elastic properties for reservoir characterization 
projects. Knowledge of relative impedance may work well 
for qualitative interpretation, but absolute impedance is nec-
essary for quantitative predictions of the reservoir properties. 
As the seismic data is band-limited and does not contain the 
low-frequency band of the spectrum, it is essential to build 
an accurate low-frequency model for confident estimates 
of the reservoir properties. Sams and Saussus (2013) have 
shown some practical implications of low-frequency model 
selection on quantitative interpretation results.

Typically, a low-frequency model is built by using well 
log data, interpreted horizons and sometimes the seismic 
velocities provided the velocity data is of good quality. The 
low-frequency model is constructed such that the different 
subsurface interval impedance values are constrained by the 
horizons interpreted on the seismic data. This leads to more 
meaningful inverted impedance data. In cases where there 
are lateral variations in the elastic properties across the 3D 
volume, if the low-frequency trend extracted from a single 
well is used for inverting the 3D data, the impedance profiles 
may or may not match the impedance logs at the other well 
locations.

Another way to generate a low-frequency model is to 
make use of a few wells for generating the low-frequency 
model for inclusion in the impedance inversion. Such a 
technique linearly interpolates the impedance data between 

the wells using weights calculated on the basis of inverse 
distance, and similarly extrapolates away from the well 
control. When quality checks are performed on the generated 
low-frequency models using the technique, often they are 
found to exhibit artifacts in the form of artificial tongues 
with anomalous impedance values, appearing more like 
bulls’ eyes. Such patterns are not geological and do not 
generate meaningful impedance sections or volumes.

A novel approach has been devised that uses the multi-
attribute regression technique for building the low-frequency 
impedance model. Multi-attribute regression is a good 
interpolation technique that uses both well log and seismic 
data to establish a relationship between various seismic 
attributes and the available log curves (Hampson et al., 
2001). The application of multi-attribute regression analysis 
for building low-frequency models has been discussed by 
Zou et al. (2013), wherein the authors discuss a workflow 
utilizing seismic velocity data, seismic data and its derived 
attributes (usually derived within the software package used) 
and relative impedance attribute. On many occasions the 
seismic velocities determined during processing of seismic 
data are not reliable, which can lead to erroneous results 
when they are utilized in seismic impedance inversion. In 
our approach, the low-frequency model generated using a 
single well has been included in the multi-attribute analysis, 
whereas the approach of Zou et al. (2013) does not follow 
this. It is important that suitable attributes are included in 
the analysis, so that a proper regression relationship gets 
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established. In this paper, we discuss a different workflow 
using multi-attribute regression analysis for predicting the 
low-frequency component that is used in seismic impedance 
inversion.

Method and analysis of results
We begin with generating a low-frequency impedance model 
for the seismic volume using a single well that seems to repre-
sent the overall compaction trend within the 3D volume. Using 
this low-frequency model, inversion is run on the seismic data. 
Though the inversion result shows a reasonably good match 
for some of the wells, we notice mismatches for other wells 
in the 3D area. This suggests that an improved low-frequency 
model is required for a better estimate of impedance volume 
from seismic inversion. For this purpose, we attempted multi-
attribute regression analysis (Hampson et al., 2001) to gener-
ate the low-frequency impedance model.

The objective of multi-attribute analysis in our exercise is 
to find a relationship between the well log data and seismic 
data at the well locations. Once this relationship is obtained 
it will be used to predict a volume of the log property, i.e. the 
low-frequency trend at each trace location of the 3D seismic 
grid. A simple way of doing this is to crossplot the two in the 
broad zone of interest, where a cluster of points is usually seen. 
A best-fit or regression line is then drawn through the cluster 
of points, which represents the relationship between the two 
variables crossplotted. But in such cases in general, a large 
scatter of points is noticed on the crossplots, which prevents us 
from using a single seismic attribute for predicting the target 
log property.

In order to improve upon the scatter of points on the 
crossplot, we try bringing in more attributes in our analysis 
and executing multi-attribute regression analysis. In this 
method, the target log is modelled as a linear combination of 
several input attributes at each sample point. This modelling 
yields a series of linear equations, which are solved for obtain-
ing a linear weighted-sum of the input seismic attributes in 
such a way that the error between the predicted and the target 
log is minimized in a least-square sense.

We determine the correct number of attributes to use by 
what is referred to as a cross-validation method (Hampson et 
al., 2001). While the additional attributes always improve the 
fit to the training data, they may be useless or worse when 
applied to new data not in the training set. This is called 
overtraining and is described by Kalkomey (1997). In the 
process of cross-validation, one well at a time is excluded from 
the training data set and prediction error is calculated at the 
blind well location. The analysis is repeated as many times as 
there are wells, each time leaving out a different well. The total 
validation error is the RMS average of the individual errors. 
Though training error decreases as we increase the number of 
attributes, validation error decreases up to a given number of 
attributes and then increases as further attributes are added. 
We pick the number of attributes at the point of minimum 
validation error so as to avoid over-training in the analysis.

Thus the different steps followed in our proposed work-
flow for building a low-frequency model are listed below, and 
also pictorially represented in Figure 1.
1. � We generate a low-frequency impedance model using a 

single well. This model represents the overall compaction 
trend within the 3D area.

2. � Multi-attribute regression analysis is performed to predict 
the low frequency component of the impedance log at each 
trace location of the 3D seismic grid. Different seismic 
attributes such as relative acoustic impedance derived from 
coloured inversion, instantaneous attributes and different 
filtered versions of seismic data are used for this purpose.

3. � Observing a poor match between the predicted low-
frequency impedance curves and actual low-frequency 
curves for different wells, a new strategy is envisaged.

4. � We include the low-frequency model derived using a 
single-well in step 1 as another attribute along with the 
other set of attributes, earlier used in the multi-attribute 
regression analysis and repeat step 2.

5. � We then generate the low-frequency model by applying 
the multi-attribute transform determined in step 4.

We have applied this novel approach for generating low-
frequency impedance models for two datasets, one from 
northeast British Columbia, and another from south central 
Alberta in Canada.

Example 1: Northeast British Columbia dataset
As mentioned above, we first carried out model-based imped-
ance inversion using the low-frequency model derived from a 
single well. Observing a poor match between actual imped-
ance curve and inverted impedance curve at other wells, we 

Figure 1 Workflow for generating low-
frequency model using multi-attribute 
regression.
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went ahead to perform multi-attribute regression analysis for 
predicting a low-frequency impedance model. First, relative 
acoustic impedance derived from coloured inversion, instanta-
neous attributes and different filtered versions of seismic data 
were used in the multi-attribute regression analysis. Figure 2 
shows the outcome of this analysis, which is a match between 
the predicted low-frequency impedance curve in red and the 
actual low-frequency curve in black for different wells. For 
each of the wells, a poor correlation is seen between the two 
types of curves over the target window that includes the broad 
zone of interest indicated with the yellow bars.

Disappointed with the poor correlation, we repeated 
the multi-attribute regression analysis by bringing in the 
low-frequency model derived using a single well as another 
attribute, along with the other seismic attributes. Figure 3 
shows the match between the predicted impedance log using 
this workflow and the low-frequency component of the actual 
impedance log curves. There is now a very good correlation 
between the two sets of curves at each well location.

To gain more confidence in the analysis, we go through 
another process called cross-validation, wherein we exclude 
one well from the multi-attribute regression analysis and use 
the process to predict it. The analysis is repeated as many 
times as there are wells on the 3D volume. Once this is done, 
the cross-validation prediction error/correlation is calculated 
at each of the well locations. The validation match is shown 
in Figure 4. The correlation in this case was found to be very 
high, lending confidence in the regression process, which is 
then run for the full volume and the low-frequency model is 
computed.

The output volume was examined for its quality and a 
horizon slice from this volume is shown in Figure 5. We observe 
that there is a gradual transition of low frequency impedance 
from one well to another as is expected. In contrast to this,v 
we show an equivalent horizon slice from the low-frequency 
impedance volume generated using the inverse-distance 
interpolation method in Figure 6. Notice the pronounced 
low-frequency impedance anomalies seen as a bull’s eye at 

Figure 2 Match between the modelled impedance log 
and actual filtered impedance log using multi-attribute 
regression. Black curve represents the filtered imped-
ance log and red curve represents the modelled imped-
ance curve. Analysis window is marked by yellow bar. 
Poor correlation coefficient of 0.4 is observed.

Figure 3 Match between the modelled impedance log 
and actual filtered impedance log using multi-attribute 
training network after including single well low-frequency 
model as one of the input. Black curve represents the 
filtered impedance log and red curve represents the 
modelled impedance curve. Analysis window is marked by 
yellow bar. Correlation coefficient improves significantly 
to 0.96.
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a single well. Again, observing a poor match between actual 
impedance curve and inverted impedance curve at other wells, 
we follow the proposed workflow for computing the low-fre-
quency impedance model. Figure 8 shows the match between 
the predicted low-frequency impedance curve in red and the 
actual low-frequency curve in black, for different wells, when 
the low-frequency model derived from a single well was not 
included in the multi-attribute regression analysis. Again, a 
poor correlation is seen between the two types of curves over 
the target window, for each of the wells.

Figure 9 shows a similar match between the predicted 
and the actual low-frequency impedance log curves, when the 
low-frequency model derived using a single-well is included as 
another attribute along with the other set of attributes in the 
multi-attribute regression analysis. Notice now there is a very 
good correlation between the two sets of curves at each well 
location. The cross-validation match between the predicted 
low-frequency impedance curve (red) and the actual low-fre-
quency curve (black) for different wells is shown in Figure 10. 

wells W1, W4, W5, W6 and W7, which will surely result in 
artifacts if used in impedance inversion.

Now, we run the model-based impedance inversion using a 
low-frequency model generated with the proposed approach. 
We get an excellent match between the actual impedance 
log and the inverted impedance log for all the wells on 
the 3D volume. Figure 7 shows the match in a blind well 
between the actual impedance log (blue curve), inverted 
impedance using single well low-frequency (black curve) and 
the inverted impedance using the low-frequency based on 
the proposed approach (red curve). It may be noticed that 
this low-frequency model gives an excellent and improved 
match with the actual impedance log at the blind well, and 
thus lends more confidence in our approach for generating a 
low-frequency model.

Example 2: South central Alberta dataset
For this dataset also, we first carry out model-based imped-
ance inversion using the low-frequency model derived from 

Figure 4 Validation match between the modelled 
impedance log and actual filtered impedance log 
using multi-attribute network after including a 
single well low-frequency model as one of the 
input. Black curve represents the filtered imped-
ance log and red curve represents the modelled 
impedance curve. Analysis window is marked by 
yellow bar. A high correlation coefficient of 0.92 
is observed.

Figure 5 Horizon slice in the ZOI for the 
low-frequency model generated using multi-
attribute regression method. (Data courtesy: 
Arcis Seismic Solutions, TGS, Calgary),

Figure 6 Horizon slice in the ZOI for the low-
frequency model generated using inverse-
distance interpolation method. (Data courtesy: 
Arcis Seismic Solutions, TGS, Calgary),
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method in Figure 12, show the pronounced low-frequency 
impedance anomalies as a bull’s eye at well 2 and well 3.

Finally, Figure 13 shows the match at a blind well between 
the actual impedance log (blue curve), inverted impedance 
using single well low-frequency (black curve) and the inverted 
impedance using the low-frequency based on the proposed 
approach (red curve). It is again noticed that the low-frequency 
curve based on the proposed approach gives an excellent 
match with the actual impedance log at the blind well.

Using our proposed workflow, we have computed the low-
frequency P-impedance model and used it in the model-based 
inversion. We have shown here the example of post-stack 

Again in this case, the correlation was found to be very high, 
confirming the applicability of the present approach.

After running the multi-attribute workflow on the full 
volume, the output volume was examined for its quality and 
horizon slice from this volume is shown in Figure 11. We make 
similar observation as we did in the previous example. An 
equivalent horizon slice from the low-frequency impedance 
volume generated using the inverse-distance interpolation 

Figure 7 Match at the blind well between the actual impedance logs (blue 
curve), inverted impedance using single well low-frequency model (black 
curve) and the inverted impedance using the low-frequency model based on 
the proposed approach (red curve).

Figure 8 Match between the modelled impedance log and actual filtered 
impedance log using multi-attribute regression. Black curve represents the 
filtered impedance log and red curve represents the modelled impedance 
curve. Analysis window is marked by yellow bar. Poor correlation coefficient 
of 0.7 is observed.

Figure 9 Match between the modelled impedance log and actual filtered 
impedance log using multi-attribute training network after including a single 
well low-frequency model as one of the inputs. Black curve represents the fil-
tered impedance log and red curve represents the modelled impedance curve. 
Analysis window is marked by yellow bar. Correlation coefficient improves 
significantly to 0.95.

Figure 10 Validation match between the modelled impedance log and actual 
filtered impedance log using multi-attribute network after including a single 
well low-frequency model as one of the inputs. Black curve represents the 
filtered impedance log and red curve represents the modelled impedance 
curve. Analysis window is marked by yellow bar. A high correlation coefficient 
of 0.89 is observed.
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and a superior low-frequency impedance model when used in 
the inversion process yields a more accurate impedance inver-
sion output. Our work on other such exercises corroborates 
this conclusion. We recommend this workflow for carrying out 
estimation of elastic parameters for quantitative interpretation 
of seismic data, especially when there is lateral variation of the 
impedance from well-to-well through the 3D volume.
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inversion only. This workflow can well be extended to the pre-
stack inversion. Once the low-frequency P-impedance model is 
computed using our proposed workflow, S-impedance and den-
sity low-frequency models can benefit from well  log-derived 
P-impedance versus S-impedance and P-impedance versus 
density crossplots for use in pre-stack simultaneous inversion.

Conclusions
The proposed workflow for generating a low-frequency imped-
ance model is superior to the existing methods of low-frequency 
impedance generation. Determination of reservoir properties 
requires accurate absolute impedance data. This cannot be 
determined from relative acoustic impedance data which is 
ambiguous in most cases. Low-frequency trends estimated 
using single- or multi-well data may contain artifacts or may 
be biased in some way, and the absolute acoustic impedance 
determined therefrom could have a whole range of values that 
differ by as much as 1000 or 1500 m/s*g/cm3. Such differences 
will lead to misleading elastic parameter calculations. Thus, 
the quality of the low-frequency impedance model used in the 
inversion has a pronounced effect on the final impedance result, 

Figure 11 Horizon slice in the zone of interest for the low-frequency model 
generated using multi-attribute regression method. (Data courtesy: Arcis 
Seismic Solutions, TGS, Calgary),

Figure 12 Horizon slice in the zone of interest for the low-frequency model 
generated using an inverse-distance interpolation method. (Data courtesy: 
Arcis Seismic Solutions, TGS, Calgary).

Figure 13 Match at the blind well between the actual impedance logs (blue 
curve), inverted impedance using single well low-frequency model (black 
curve) and the inverted impedance using the low-frequency model based on 
the proposed approach (red curve).




