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Adaptive least-squares RTM with applications  
to subsalt imaging

Abstract
Least-squares reverse time migration (LSRTM) refines the 

seismic image toward true reflectivity by inversion. Its iterative 
nature and modeling capability enable the use of synthetic data to 
guide the preconditioning of input data. When the velocity contains 
errors, dynamic warping can be used to shift the input data and 
force the traveltime to be consistent with the imperfect migration 
velocity. A crosscorrelation-based confidence level is introduced 
to control the quality of dynamic warping for field data. The 
confidence level also is used as an inverse weighting to adaptively 
precondition the data residual. The adaptive preconditioning au-
tomatically balances data fitting in the shallow and deep and speeds 
up convergence in subsalt. Both synthetic and field data experiments 
based in the Gulf of Mexico show that the adaptive LSRTM can 
improve the image quality in subsalt effectively and efficiently. 
Within only a few iterations, the adaptive LSRTM suppresses the 
salt halo artifacts and increases the signal-to-noise ratio in poorly 
illuminated areas. It also improves the termination of sediments 
against salt boundaries and enhances subsalt image coherency. 
Compared with conventional RTM, the adaptive LSRTM image 
is more favorable to geologic interpretation.

Introduction
Salt basins play an important role in worldwide hydrocarbon 

exploration. As one of the most important parts of seismic data 
processing, prestack depth migration produces directly interpretable 
seismic images critical to guiding further drilling analysis. In practice, 
imaging subsalt structures has never been an easy task due to the 
geologic complexity related to salt tectonics. The salt body itself acts 
as a strong reflecting and refracting lens to scatter most energy 
emitted from the surface seismic source, thus introducing poor il-
lumination and weak signal-to-noise ratio (S/N) in subsalt areas. 

The difficulties in building an accurate subsalt velocity model 
make subsalt imaging even more challenging. While the model-
building technique has been advanced to provide high-resolution 
velocity models for migration, image quality in areas near and 
below salt bodies is still unsatisfactory in many cases because of 
the limitations of the imaging algorithms themselves.

Recently, inversion-based imaging algorithms (Schuster, 1993; 
Nemeth et al., 1999; Duquet et al., 2000), such as least-squares 
reverse time migration (LSRTM), have gained the attention of 
geophysicists (e.g., Tang, 2009; Wong et al., 2011; Dai et al., 
2013). Different from conventional migration algorithms based 
on crosscorrelation imaging condition, LSRTM uses geophysical 
inversion to iteratively refine the seismic image toward true re-
flectivity (Dong et al., 2012) and overcome many shortcomings 
of conventional migration methods. 

Previous studies, including field data tests (e.g., Zeng et al., 
2014a; Zhang et al., 2015), show that LSRTM can reduce migration 
artifacts, balance image amplitudes, reveal weak signals, and improve 
image coherency. These advantages make LSRTM very attractive 
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for subsalt imaging. However, we must address many practical 
issues (Wang et al., 2013) to bring LSRTM from the laboratory 
to production. One major problem is that the original theory of 
LSRTM requires perfect migration velocity; otherwise, the least-
squares data fitting between input and modeled data will be errone-
ous. Unfortunately, velocity errors always exist in the real world, 
and it seems unattainable to make the short-wavelength velocity 
components accurate enough near the salt (Etgen et al., 2014). The 
data mismatch yields extra artifacts in the data residual and then 
contaminates the image updating. In particular, large errors can 
occur at far offsets and late arrivals corresponding to subsalt reflec-
tions and cause convergence problems in subsalt areas. 

Subsalt images also often suffer from strong salt-related migra-
tion artifacts. A typical artifact known as a salt “halo” is a type 
of noise that parallels the salt flank or base of salt (BOS) and 
strongly degrades the image near the salt. Because of the strong 
amplitudes of the halo artifacts and the slow convergence of subsalt 
inversion, LSRTM typically needs tens of iterations to clarify 
images near the salt, even when the subsalt velocities are accurate 
enough. The massive computation cost makes LSRTM almost 
prohibitive for large 3D projects focusing on subsalt.

Here, we tackle the two major problems of imperfect velocity 
and strong halo artifacts to promote the applicability of LSRTM 
for subsalt imaging. We propose an adaptive solution for LSRTM 
so that it can tolerate minor velocity errors and converge fast in 
subsalt by automatic suppression of the halo artifacts. We also 
introduce a quality-control tool named “confidence level” to 
evaluate least-squares data fitting and adaptively precondition the 
data residual to speed up the subsalt convergence. The philosophy 
of this adaptive LSRTM (in short, ALSRTM) method is to 
enhance the quality of subsalt images using the best available, 
but imperfect, velocity model with minimum computation cost.

Adaptive data fitting with dynamic warping
To date, all least-squares migration methods are implemented 

as a type of single parameter inversion that searches only for the 
solution of seismic reflectivity (or impedance). During the entire 
inversion procedure, seismic velocity is fed to the program as an 
input parameter and remains unchanged. Thus, the quality of 
the LSRTM image relies highly on the velocity-model accuracy. 
Any error in the velocity will propagate into the inversion and 
will be amplified during the iterations. In theory, LSRTM re-
quires perfect migration velocity to ensure the convergence. 
However, in real-world subsalt imaging, it seems that velocity 
errors are unavoidable. This introduces unwanted time shifts in 
synthetic waveforms with respect to the input data. Because the 
synthetic data are modeled using the stacked image as the re-
flectivity, the zero-offset data and model are always self-consis-
tent. As the offset increases, velocity errors are accumulated 
gradually during prestack modeling. Thus, the time shift is 
nonlinear and usually increases with offset. 

1TGS-NOPEC Geophysical Company. http://dx.doi.org/10.1190/tle35030253.1.
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Figure 1 shows an example of the 
synthetic seismic wiggles overlaid with 
corresponding time shifts caused by veloc-
ity changes in both the near- and far-offset 
range. It is clear that the far-offset data 
are more prone to velocity errors than that 
in the near-offset range. It also indicates 
LSRTM may have the convergence prob-
lem in subsalt due to the importance of 
far-offset data for subsalt imaging. 

Previously, we used a matching filter 
to correct the synthetic data so that the 
waveforms can be aligned to generate 
reasonable residual waveforms (Zeng et 
al., 2014b). However, this correction will 
be canceled when we reverse time mi-
grate the residual, and the gradient is 
blurred due to using inaccurate velocities 
for adjoint propagation. To make LSRTM tolerable to minor 
velocity errors, Luo and Hale (2014) proposed to use dynamic 
warping (Hale, 2013) to modify the arrival time of the input data 
and force them to be aligned with the synthetic data. For LSRTM, 
this data-domain adjustment is feasible because it is done only 
once before the first iteration and imposes no extra computation 
cost for the inversion. Since the modeling and migration kernels 
share the same velocity model, the synthetic data are self-consistent 
with the migrated image in terms of time-to-depth mapping. 
After adjusting the input data using synthetic as reference, we 
can obtain a better-focused image by correctly mapping the time-
domain data to the depth-domain image. This concept of using 
synthetic data as a reference to guide the input data preconditioning 
is an important feature of the ALSRTM.

Using dynamic warping to adaptively adjust the match between 
input and synthetic data is not only mathematically efficient, but 
also physically meaningful. If we consider that the real input data 
come from a physical earth-modeling process based on true earth 
reflectivity and true velocity, the warped input data are equivalent 
to the results from the same modeling based on true earth reflectivity 
and the derived migration velocity. The true earth reflectivity is the 
inversion objective of LSRTM, and the true earth velocity is un-
known. By directly fitting the raw input and synthetic data, the 
inversion contains two unknowns (true reflectivity and true velocity) 
but searches for only one of them. This introduces a stability problem 
for the inversion. On the contrary, fitting the warped input and 
synthetic data eliminates the involvement of the true earth velocity 
and leaves the true earth reflectivity as the only unknown for the 
solution, thus stabilizing the inversion.

Figure 2 demonstrates the effectiveness of dynamic warping 
during LSRTM with the presence of velocity errors. We first 
generate a set of synthetic shot gathers using a perfect velocity 
and true reflectivity, then migrate them using a velocity model 
containing errors. The designed velocity errors vary nonlinearly 
from 1% in the shallow to 6% below the salt. Without dynamic 
warping (Figure 2a), LSRTM generates extra migration artifacts 
in the shallow and is unable to correctly image the subsalt. By 
comparison, the result with dynamic warping applied during the 
inversion (Figure 2b) presents more coherent events in the shallow 
and continuous sediment images in the subsalt area. The overall 

Figure 1. A synthetic example of data shifting caused by velocity errors. The far-offset data are 
more sensitive to velocity changes than the near-offset data.

image is consistent with the LSRTM result that assumes a perfect 
velocity model (Figure 2c).

Quality control and adaptive residual preconditioning
When dealing with field data, we should be aware that dynamic 

warping itself assumes that the differences of the two input signals 
are minor and mainly due to (temporal or spatial) distortion. Thus, 
we need to assume that the seismic events in the synthetic data 
can always be found to match those in the reference data. This 
assumption is not always true in real-world LSRTM due to the 
quality limitation of the initial image. Especially for images near 
the salt, e.g. in the shadow zone or just below the BOS, the image 
quality is usually poor compared to those above the salt. In ad-
dition, extra artifacts on the initial image also will generate spuri-
ous events on the synthetic record and therefore degrade the 
coherency of the synthetic and input waveforms. To overcome 
this problem, we introduce a confidence level to measure the reli-
ability of the warped data and evaluate the quality of the data 
adaptive correction. The confidence level at each sample point is 
calculated by a 2D normalized crosscorrelation using a sliding 
window in the offset-time domain.

The purpose of the confidence level is to govern the least-
squares data fitting for LSRTM. First, it evaluates the initial 
quality of the input and synthetic data. A high confidence level 
means the input and synthetic wiggles match well in the scale of 
dominant period, while a low confidence level suggests adaptive 
data adjusting should be applied on the input data. A negative 
confidence-level value indicates a possible cycle skipping because 
of the change of wiggle polarity after modeling. Moreover, the 
confidence level tells if the dynamic warping is functional as 
desired. By comparing the confidence level before and after dy-
namic warping, we should see an increase of confidence level 
because the warping algorithm is designed to better align the 
input and synthetic data.

Figure 3 and Figure 4 demonstrate the procedure of the 
quality-controlled adaptive data fitting. A real shot gather (Figure 
3a) is extracted from a wide-azimuth (WAZ) survey in the Gulf 
of Mexico (GoM). The corresponding synthetic data (Figure 3b) 
during the first iteration of LSRTM is presented for comparison. 
Figure 4a displays the calculated confidence level before the 
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adaptive data adjusting. The data confi-
dence level is high in the shallow and 
near-offset range while relatively low in 
the deep portion and far-offset range. It 
suggests the velocity contains errors in 
the deep portion of the model. After 
applying dynamic warping to the input 
data and appropriate amplitude correc-
tion to the synthetic data, the recalcu-
lated confidence level (Figure 4b) in-
creases in the deep portion and far-offset 
range. The overall confidence level is also 
increased for the whole gather. It con-
firms that the dynamic warping appro-
priately aligns the traveltime of the input 
and synthetic data by compensating the 
velocity errors.

The confidence level is also used as 
an inverse weighting to precondition the 
data residual to gain optimum conver-
gence focusing on subsalt enhancements. 
When applying LSRTM to subsalt imag-
ing, we often find that the program needs 
many iterations to produce notable im-
provements in the subsalt areas. In the 
meantime, images above the salt could 
be overupdated with some undesired 
artifacts. This is primarily because of the 
different convergence rates between shal-
low and deep areas. In most cases, the 
S/N of the shallow reflections on a shot 
gather is higher than that in the deep 
because of the limited illumination and 
energy penetration below the salt. The 
corresponding image quality in the shal-
low is also better than that of subsalt. This 
means the starting model for the inversion 
is closer to the true solution in shallow 
than in deep. Thus, the inversion con-
verges fast in shallow and slowly in deep. 
Within the same number of iterations when the subsalt areas yield 
good waveform fitting between the synthetic and input data, the 
shallow portion of the synthetic data is likely to overmatch the 
input containing noise. By preconditioning the raw residual using 
the confidence level as an inverse weighting, the convergence rates 
for the shallow and deep images are balanced. 

Another important benefit of this adaptive preconditioning 
is that it automatically dims the strong events on the gradient, 
including the halos near the BOS or salt flanks, and boosts the 
weak energy below the salt. This is because the migration operator 
is linear and directly links the strong events on the depth-domain 
image with the time-domain data with good S/N and high 
confidence level. The adaptive weighting guides the inversion to 
emphasize the weak signals with low confidence level during the 
iteration until they are recovered to a high confidence level after 
iterative image updating. In practice, we found this adaptive 
preconditioning of data residual can speed up the convergence in 

Figure 2. A comparison of synthetic LSRTM results using erroneous migration velocity (a) 
without and (b) with applying dynamic warping to the input data. The overall image is consis-
tent with (c) the LSRTM result that assumes a perfect velocity model.

Figure 3. (a) A real shot gather extracted from a survey based in 
GoM versus (b) the synthetic data during the first iteration of 
LSRTM.
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subsalt areas significantly and suppress the strong halo artifacts 
efficiently so that satisfactory subsalt images can be obtained 
within only a few iterations.

GoM field data applications
To this point we have developed the ALSRTM focusing on 

subsalt enhancements. With the quality-controlled adaptive solu-
tion, we apply the ALSRTM to the Freedom 3D WAZ data to 
examine the effectiveness of the algorithm. The survey is a typical 
WAZ acquisition towing 8-km-long multicable streamers near 
the Mississippi Canyon in the GoM. Figure 5a shows a target 
inline section of the conventional RTM image. In area of interest 
A, which is beneath the BOS, it is very difficult for the interpreters 
to trace the horizons and determine the location of event termina-
tion because of the existence of strong halo artifacts parallel to 
the salt body. This introduces uncertainties to recover the geologic 
history of the sedimentation for further analysis. 

The image quality in the area of interest B is limited because 
of a typical illumination problem caused by the salt canopy. The 
broken image of the BOS also indicates there are potential velocity 
errors around the salt body. Figure 5b shows the corresponding 
ALSRTM image using the exact same input data after two itera-
tions. In the area of interest A, the ALSRTM image shows clear 
geologic contacts between the sediments and the salt body by 
suppressing the strong halo artifacts. In the area of interest B, the 
subsalt sediments are better imaged compared to those on the 
conventional RTM image. The continuity of the subsalt events also 
is improved because of the increased S/N. The overall comparison 
suggests that the ALSRTM image offers significant subsalt en-
hancements and produces favorable interpretation results.

The success of the ALSRTM for subsalt imaging can be con-
firmed by the application to Patriot 3D WAZ data, which is also 
from the GoM but in a different survey area. The geologic condition 
in the Patriot area is more complex than that in the Freedom area. 
Figure 6a presents a depth slice of the conventional RTM image 
at a depth of 5600 m. The two salt bodies surround the sediments 
and cause typical image problems due to the complexity of the 
wavefield near the steeply dipping salt flanks. Strong migration 
swings are observed near the salt body in the area marked A. 

In area B, the RTM image contains strong halo artifacts that 
are parallel to the salt boundary and potentially could mislead 
the interpretation. After the ALSRTM iteration (Figure 6b), the 
migration swings are reduced and the strong halo artifacts are 
suppressed to show clear geologic contacts near the salt body. 

More detailed image improvements after the ALSRTM are 
illustrated in a typical inline section shown in Figure 7. The 
middle part of the conventional RTM section (Figure 7a) 
contains significant migration swings. In the shadow area near 
the salt flank, strong low-frequency halo artifacts occur along 
the overturned salt boundary and bury effective signals from 
the sediments. By applying the ALSRTM, the middle part of 
the image (Figure 7b) is more coherent due to the cancellation 
of the swing noise. The shadow area presents sharp termination 
of the sediments against the salt boundary after effective sup-
pression of the halo artifacts. It is evident that the quality of the 
subsalt image after ALSRTM has been enhanced substantially, 
and the image itself is more geologically interpretable than the 
conventional RTM image.

Figure 4. The corresponding confidence level (a) before and (b) after 
adaptive data adjusting. The confidence level is increased for deep and 
far-offset reflections after the adaptive data adjusting.

Figure 5. Inline section of (a) conventional RTM image and (b) 
ALSRTM image migrated from the Freedom 3D WAZ data in the 
GoM. Area of interest A is marked by the dotted ellipse on the left side. 
Area of interest B is marked by the rounded rectangle on the right side.

Figure 6. Depth slice of (a) conventional RTM image and (b) 
ALSRTM image at a depth of 5600 m migrated from the Patriot 3D 
WAZ data in the GoM. Area A (dotted ellipse) and area B (rounded 
rectangle) are marked for comparison.
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Conclusions
We addressed typical subsalt imaging problems using LSRTM 

with quality-controlled adaptive strategies. Minor velocity errors 
can be compensated by dynamic warping the input data to match 
the synthetic so that they are consistent with the migration velocity 
model in both near- and far-offset ranges. The crosscorrelation-
based confidence level is developed to qualitatively measure the 
similarity between the preprocessed input and synthetic data. It 
also serves as an adaptive weighting to precondition the data 
residual and automatically balance the data maturity of shallow 
and deep reflections to gain optimum convergence with emphasis 
on subsalt enhancements.

The GoM-based field data examples showed that the ALSRTM 
can improve the quality of subsalt images significantly with relatively 
low computation cost. Compared to conventional RTM, the 
ALSRTM suppressed the commonly seen salt-related migration 
swing noise and halo artifacts to sharpen the termination of sedi-
ments against the salt boundaries. It increased the S/N in poorly 
illuminated areas and enhanced the image coherency of subsalt 
events. Those subsalt enhancements facilitate the subsequent in-
terpretation and drilling decision. In addition, the adaptive strategies 
dramatically reduce the computation cost so that the ALSRTM 
can produce geologically favorable results within only a few itera-
tions. As an overview of the algorithm, the ALSRTM is an effective 
and efficient imaging technique that is practical to reveal geologic 
structures near and beneath salt bodies where conventional imaging 
algorithms encounter challenges.  
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