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Abstract  

Foundation models have emerged as powerful tools for learning general-purpose representations 
from large, unlabeled datasets. In this study, we explore seismic foundation models (SFMs) based 
on Vision Transformers (ViTs) trained using masked autoencoding (MAE). We focus on how 
model scale, training data size, and fine-tuning strategies influence generalization and 
downstream performance. Our experiments encompass 2D and 3D ViT-MAE architectures, with 
2D model sizes ranging from millions of parameters to the largest 3D models containing 1.8 billion 
parameters, pre-trained on a global corpus of seismic surveys covering 444,000 km². 

Introduction 
 
The application of foundation models has transformed the language and vision fields, 
demonstrating exceptional capabilities in leveraging large-scale, unlabeled datasets through self-
supervised learning techniques. This paradigm shift, especially in seismic data analysis, offers 
significant potential for enhancing subsurface characterization and streamlining exploration 
workflows. However, scaling seismic foundation models to handle seismic data, extensive 
volumes, and unique characteristics effectively poses technical and practical challenges.  

This paper synthesizes recent advancements in scaling seismic foundation models. We focus on 
Masked Autoencoder (MAE)-based Vision Transformer (ViT) architectures for critical tasks like 
salt and facies segmentation. By utilizing industry benchmarks like LANDMASS1 and Parihaka 
and proprietary datasets, we explore key aspects of optimizing model architecture, enhancing 
computational efficiency in scaling strategies, and employing adapter-based fine-tuning methods 
that improve model performance on targeted downstream tasks. Through state-of-the-art 
developments and identifying promising avenues for future research, we aim to comprehensively 
understand how seismic foundation models can be effectively scaled and adapted. 

How ViTs scale on seismic data 
 

The model architecture shown schematically in Figure 1 (left) is based on a Masked Autoencoder 

(MAE) with a Vision Transformer (ViT) backbone, as described by He et al. (2021), modified to 

process seismic data (Lasscock et al., 2024). The self-supervised training method is memory 

efficient since most of the patches are processed in the smaller model decoder. The large encoder 

only propagates a small percentage of the patches. An example of the pre-training is shown in 

Figure 1 (right); the left column shows a set of inline, crossline, and depth sections from an input 

mini cube. The middle column shows a random collection of 163 patches input to the model, and 

the right column shows the reconstruction. We see qualitatively that the model can reconstruct 

fine details, including faults and truncations, even from a minimal subset of the input sample.  

For our experiments, we trained seismic 2D models (listed in Table 1) following the sizing 
convention of ViT models. Data augmentation techniques include horizontal flipping and random 
resized cropping, helping to improve representation quality and generalization. For 
benchmarking, we took the pre-trained encoder and froze its weights. On top of the encoder, we 
add a batch normalization to the embeddings and then a linear head that maps the image class 
[CLS] token embeddings to four classes in the LANDMASS1 dataset in a linear probing setup. 
For the loss function, we utilize simple single-label cross-entropy. 
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Figure 1. A modified schematic view that explains the ViT-MAE pre-training concept. A specific 

example of a sampled 640x640x1024 mini-cube and its reconstruction during pre-training. 

Table 1:  Pre-trained model configurations for scaling analysis. Each model configuration is 
trained with 0.11 million, 1 million, 10 million, and 41 million dataset size variants with 12 models. 

Model Name Num. Param Hidden Size MLP Size ViT Layers Atten. Heads 

SeisFM-Ti 5.7M 192 768 12 3 

SeisFM-S 21M 384 1536 12 6 

SeisFM-B 85M 768 3072 12 12 

We utilized few-shot linear-probing with frozen SeisFM backbones to measure performance. For 
instance, one-shot means we take one example from each class (4 images) and train the head. 
Twenty-shot means we take 80 total images. As mentioned earlier, the LANDMASS1 dataset has 
over 17 thousand samples. We first divide the dataset into training (3%), validation (10%), and 
testing (87%) subsets. Then we sample the training split for {1, 2, 5, 10, 20}-shot datasets. The 
hyperparameters are selected differently for each shot. Augmentation strategies are similar to the 
pre-training. Our performance metrics for linear probing are the F1 score and Top-1 Error Rate, 
calculated on LANDMASS1 test data facies predictions. We use positional encoding interpolation 
to enable training on 99×99 images with a ViT encoder that was pre-trained on 224×224 data 
patches (Chen et al., 2023).  

 

Figure 2:  Few-shot classification performance with various model and dataset size configurations. 

Like other domains, we find that increasing both the dataset size and the model parameter count 
(and thus the computational requirements) enhances the few-shot performance of the model. We 
use two metrics for benchmarking: the F1 score and the Top-1 Error Rate. Each experiment is 
conducted seven times to minimize sensitivity to model initialization and data sampling. Figure 2 
shows some of our results. As expected, performance improves with more examples per class. 
Nonetheless, the one-shot performance is impressive. 
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We also benchmarked the effect of model size using the other SeisFM variants with the same 
method. Figure 2 presents a selection of confusion matrices and Top-1 Error Rate for different 
model configurations. The color change represents model size (from blue: small to yellow: large). 
The size of the markers reflects the amount of data used in pre-training each specific model 
highlighted in the legend. We notice that few-shot classification performance improves as both 
the model and dataset sizes increase. Evidence suggests that the models can scale further with 
additional data and larger sizes. 

Efficient Fine-Tuning of an SFM for Improved Segmentation 

Using a publicly available seismic facies benchmark dataset from the Parihaka survey (SEAM AI, 

2025), we systematically compare the performance of frozen encoders, fully fine-tuned models, 

and adapter-enhanced approaches. Specifically, we investigate the effectiveness of adapting a 

pre-trained 2D SeisFM encoder using lightweight parameter-efficient fine-tuning (PEFT) adapter 

modules (Xu et al., 2023). Among the PEFT methods evaluated, Low-Rank Adaptation, or LoRA 

(Zhu et al., 2024), achieved the highest mean Intersection over Union (mIoU) of 0.9181, 

outperforming both full fine-tuning (mIoU = 0.8843) and the ViT-Adapter (Chen et al, 2023) 

approach (mIoU = 0.9024). These results underscore that adapter-based tuning strategies can 

match or surpass the performance of full fine-tuning while dramatically reducing the number of 

trainable parameters—by up to 75%—and associated computational costs.  

Generalization of 3D SFM in a salt segmentation task 

To evaluate the generalization capabilities of the 3D Seismic Foundation Model (SeisFM) on salt 
interpretation, we conducted experiments using an RTM stack from an offshore South America 
dataset that was explicitly held out from both pre-training and fine-tuning phases. This test setup 
mirrors evaluation protocols proposed in [Roberts 2024] and [Warren 2023], ensuring that the 
model's performance reflects true out-of-distribution generalization. The model used in this 
experiment was pre-trained on a large-scale corpus of 3D seismic surveys totaling over 444,000 
km², covering a diverse range of depositional environments but excluding any data from the South 
Atlantic region to prevent data leakage. 

Fine-tuning for salt segmentation was performed using a limited number of labeled volumes from 
other basins, with only minimal supervision applied during adaptation. Figure 3 shows an example 
result comparing the model’s predicted salt mask with the ground truth from the South America 
dataset. The model achieved an Intersection over Union (IoU) score of 0.96, which is on par with 
the best results reported for the Gulf of Mexico using fully supervised 3D U-Net architectures. 
These findings highlight the model’s ability to generalize across basins and structural regimes 
with minimal retraining, reinforcing the utility of foundation models for scalable interpretation 
across global datasets. 

Conclusions 

Increasing the size of Seismic Foundation Models and  their training datasets leads to consistent 
gains in few-shot performance. Our experiments validate the empirical scaling laws previously 
observed in vision and language domains. On the LANDMASS1 benchmark, larger models 
achieve lower error rates while requiring fewer labeled examples. We also compare full fine-tuning 
with parameter-efficient methods such as LoRA and ViT-Adapters for seismic facies 
segmentation. On the Parihaka benchmark dataset, LoRA achieves a new state-of-the-art result 
(mIoU = 0.9181) while reducing trainable parameters by up to 75%. Beyond public benchmarks, 
our 3D models demonstrate strong generalization on proprietary salt interpretation tasks. When 
applied to data from South America—regions excluded from pretraining and fine-tuning—the 
models attain mean IoU scores of 0.96. These results highlight the importance of architectural 
scale, dimensionality, and tuning approach in building accurate, efficient, and generalizable 
models for seismic interpretation. 
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Figure 3. Inline and crossline sections from the held-out South American dataset. 
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