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Summary 

 

We describe a framework for interpolation of broadband, 

prestack seismic data using a deep learning pipeline trained 

in a self-supervised manner. Unlike classification or 

segmentation tasks, image generation with convolutional 

neural networks (CNNs) is inherently more complex as the 

networks needs to learn the high dimensional distributions 

of broadband prestack gathers to be able to accurately 

reconstruct the missing traces. We highlight two main 

challenges specific to prestack seismic data for this task: 

(1) the choice of the loss function and (2) the lack of 

suitable training data in the form of image-label pairs to 

cast the problem as a supervised deep learning task.  

We show that a naïve implementation of standard loss 

measures like sample-wise L2 or L1 leads to cycle skipping 

issues at high frequencies and undesirable smoothness in 

the mid-frequency reconstruction. To resolve this, we use a 

perceptual loss function computed using a pretrained 

variational auto-encoder (VAE) that penalizes differences 

between the interpolated and the input gathers in the high 

dimensional feature space of these gathers. To account for 

the lack of high-quality labelled training data we use a self-

supervised learning scheme where a generator network is 

trained to read in random noise and produce the desired 

super-resolution output.  

 

Introduction 

 

Seismic data interpolation is one of the classical inverse 

problems in seismic processing that can be formulated as: 

 

,                     (1)   

                                 
where f(m,d) is a data term measuring the discrepancy 

between the input data (d) and the interpolation result (m), 

while J(m) is a regularization term which tries to constrain 

the estimated model according to some apriory knowledge 

about the system (e.g. sparsity constraints). For irregularly 

sampled seismic data, equation (1) can be efficiently solved 

using iterative greedy solvers (Abma et al., 2006, and Xu et 

al., 2005)  and produces state-of-the art results on 

production surveys. However, when the sampling scheme 

is regular, the sparsity constraint breaks down and 

complicated heuristics need to be designed to make 

sparsity-promoting methods work on such regularly 

sampled data (e.g., Curry et al., 2010). An alternative way 

of interpolating regularly sampled prestack data is using a 

deep learning framework to reformulate equation (1) as: 

 

  ,                   (2) 

 

where  is a suitably designed convolutional neural 

network (CNN) trained as a generator, i.e. given z an image 

of random numbers of size (2N X 2N) drawn from a multi-

dimensional gaussian distribution, one tries to optimize the 

weights of the generator such that the discrepancy  between 

the network’s super-resolution (by a factor of 2) output 

 and the original data d (N X N) is minimized after 

application of a standard subsampling operator L. In the 

remainder of the paper we describe some of the issues and 

practical solutions for solving equation (2) for field data 

 

Theory 

 

The first problem that needs to be addressed is what kind of 

training data should one use. While using synthetic data is a 

viable option, but it is well known that when the 

application domain is complex CNN models trained on 

synthetic data suffer from domain shifting issues even for 

far more simpler tasks like classification or segmentation 

(e.g. Hoffman et al., 2018). Another option is to use 

simpler interpolators (e.g. Wang et al., 2019) like bicubic 

or dip-based to generate the super-resolution data to act as 

labels. However, when the data is broadband and the 

structure is complex, such simple interpolators would 

usually produce sub-optimal results making them 

unsuitable to be used as ground truths. Instead we propose 

using a generator framework as shown in the top half of 

Figure 1 in the red box. The generator is a U-shaped 

encoder-decoder network that uses 4 encoder blocks with 

{32,64,128,256} channels along with tanh as non-

linearities. The decoder uses nearest neighbor interpolation 

followed by 3X3 convolutions to upsample the feature 

maps.  The generator’s output is subsampled to make it the 

same size as the target input gather that needs to be 

interpolated to compute the loss which can be 

backpropagated through the generator. Notice that in this 

setup no ground truth label set is required, instead the 

generator is trained with the low-resolution input only in a 

fully self-supervised manner. Figure 3c shows the 

interpolation result (super sampling by a factor of 2) for a 

complex channel gather (Figure 3a) using a conventional 

loss function that measures the per pixel L2 loss between 

the generator’s output and the target input image to update 

the weights of the network.  From the interpolated result it 

is clear that while the events are reconstructed, excessive 

jitters are seen in the reconstruction (yellow ovals, zoomed 

view in Figure 4c). We attribute this to cycle-skipping 

issues at high frequencies. Since the L2 loss is computed in 

the low-dimensional space of the gathers, unless the 

reconstruction is within half a cycle of the input, the loss is 

extremely inaccurate.  
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Interpolation with self-supervised learning 

 

Perceptual Loss with pretrained VAE 

 

In order to combat the problems of measuring the 

discrepancy between gathers in a low-dimensional 2D 

space, we use a setup similar to the one described in Gatys 

et al., 2015 and Johnson et al., 2016. The key idea is to use 

loss functions that penalize reconstruction errors on 

relevant high dimensional features of the gathers. If the 

features of the gather are adequately encoded, it is expected 

that such high dimensional feature representation would 

show adequate disentaglement such that loss functions can 

be computed which are not susceptible to cycle skipping.  

 

 To extract such high dimensional feature maps we use a 

custom VAE (Kingma et al, 2014), with residual blocks 

(He et al., 2016), trained with prestack seismic gathers. 

Once the VAE is trained, the decoder units are removed 

while the encoder part of the VAE (total of 35 layers) are 

retained to be used as an efficient feature extractor network, 

ɸ (indicated in the purple box in Figure 1). Figure 2b and 

2c shows a sample feature map extracted for a broadband 

channel gather (Figure 2a) at layer 9 and layer 26 using ɸ.  

Notice that for the lower layer (Figure 2b) the feature map 

resembles the input image somewhat, while for the higher 

layer all spatial information has been lost while semantic 

information has been enriched.  Using this  pretrained 

feature extractor (ɸ) we extract all the n-feature maps 

(n=64) at layer-9 and construct a high dimensional content 

loss (Lc) between the features of the input and the 

generator’s subsampled reconstruction as :  

 

                     ,                (3) 

 

The loss function in equation (3) encourages the 

reconstructed gather to have a similar representation as the 

input gather in the high dimensional feature space, rather 

than trying to enforce a match (in L2 sense) in the image 

space. Consequently we can expect that due to better 

separation of the key features of the gathers in this layer, 

the content differences between the input and the 

reconstruction can be computed in a more robust fashion 

when compared to a conventional per-sample L2 loss.  

 

Unlike the lower layers, the feature maps extracted from 

the higher layer of a network encode the  style of the image 

(Gatys et. Al., 2015), i.e. information about the gather’s 

statistics. This information can be used to further improve 

the reconstruction task, by using the feature maps, Fl, at 

some level, l, of the network to construct Gram matrices, 

Gl, which are proportional to the covariance of these high 

dimensional encodings of the image. Figure 2d shows the 

Gram matrix  for the higher layers’ feature maps (Figure 

2c) at layer 26. We utilize these Gram matrices (G) to 

compute a style loss as: 

 

 ,     (4) 

 

In the above equation the Gram matrices are computed at 3 

high level layers (l) in the network, i.e. {l=14, 26, 35} and 

are summed to produce the style loss. Notice that by using 

equations (3) and (4) we have effectively separated the loss 

computation between a reconstructed and original gather 

into two components: (1) a content loss, equation (3), that 

can efficiently track key content difference between the 

gathers and (2) the style loss, equation (4) which can be 

used to reduce the higher order statistical differences  

                   

 
 
Figure 1: CNN pipeline for prestack interpolation. Top Red box: a U shaped generator network reads in random noise to produce a super-resolution 
gather which is subsampled with a sampling operator (L) and compared with the original gather (green-box) to compute a per-pixel L2 loss. Bottom 

Purple box: Both the generator’s reconstruction and the original image are passed to fixed pretrained encoder network to extract high dimensional 

feature maps at different levels of this feature extractor network. Differences of these feature maps (peceptual loss) are used to augment the L2 loss 

(yellow box) and backpropagated through the generator to update its weights.  
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Interpolation with self-supervised learning 

 

 

 

 

 
 

Figure 2: (a) channel gather, sample feature map extracted at (b) layer-9 , (c) layer-26 of the feature extractor network and (d) Gram matrix for all 

256 feature maps at layer-26 which is proportional to the covariance of  the 256-dimensional feature space at layer-26.  

 
 

Figure 3: (a) original channel gather, interpolation with (b) conventional dip based, self supervised learning with (c) L2 loss only and (d) 
L2+perceptual loss.  
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Interpolation with self-supervised learning 

 

between the most relevant features of the reconstruction 

and the input. Together these two losses are referred to as 

the perceptual loss. The final loss that can now be used to 

update the generator’s weights during the optimization 

process is given by: 

 

 ,     (5) 

 

where wi are the weights used to scale the conventional L2 

reconstruction loss (first term), the content loss (second 

term) and the style loss (the third term).  We note that 

during the training process, the feature extractor network is 

not updated, it is fixed and precomputed on a survey-by-

survey basis. Only the generator’s weights are updated to 

produce the interpolated gather. Figure 3d shows the 

interpolated gather using the loss function defined n 

equation (5). Notice that the cycle skipping issues (Figure 

3c) have been effectively dealt with and undesirable 

smoothness in the reconstruction are also removed. Figure 

4 compares a zoomed in view of the interpolation with a 

traditional dip-based interpolator the L2+perceptual loss 

based and L2-only reconstruction. Notice that the 

reconstruction (Figure 4b) is extremely accuracte and 

undesirable artefacts that a dip-based interpolator might 

produce (yellow oval and arrows, Figure 4a) in areas where 

the dip semblances are uncertain are effectively handled, 

while jitters due to cycle skipping (Figure 4c) are also 

removed by the CNN  based interpolator described in this 

paper 

 One problem that our current implementation has and 

which has not been dealt with in this paper, is the lack of 

explicit anti-aliasing. Consequently our tests revealed, that 

the interpolation framework in some places do not handle 

aliased data adequately. In order to introduce anti-aliasing 

in this framework we plan to use a discriminator similar to 

a Generative Adversarial Network (GAN) within our 

framework. The task of the discriminator would be to 

compute a loss that explicitly penalizes reconstructed 

gathers that show aliasing. This loss can be futher used to 

augment the loss function described in  equation (5) to 

introduce anti-aliasing into the framework.  

 

Conclusions 

 

We have described an efficient framework for interpolation 

of prestack, broadband seismic data using deep learning 

techniques. We have shown the use of a new loss function 

(the perceptual loss) computed using high -dimensional 

feature maps that a CNN produces which can overcome 

one of the perennial problems of computing the 

discrepancies between two seismic gathers (or images) that 

likely exhibit cycle-skipping issues. We anticipate that use 

of this kind of loss-functions can be used in other areas of 

seismic processing (e.g. FWI loss) where the optimization 

objective  suffers from similar issues. Further for complex 

seismic signal processing tasks like denoise, we also 

anticipate that investigating the use of feature maps that a 

CNN produces can be an attractive alternative to the more 

traditional linearity based transform domain 

implementations (e.g. Fourier or Curvelet transform).  In 

the context of interpolation, future work would include 

introducing explicit aliasing controls via a GAN framework 

to make the results more robust.  
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Figure 4: Zoomed view of interpolation by (a) dip based, CNN 

using (b) L2 + perceptual loss and (c) L2 loss only. 
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