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Summary 

 

We describe SaltSeg: a high capacity deep convolutional 

neural network (CNN) architecture that achieves human 

level interpretation accuracy on seismic images. SaltSeg is 

primarily used for salt interpretation and is a key 

component of a deep learning based fully automated salt 

model building pipeline. It is designed to work on low 

resolution, noisy, incorrectly migrated seismic images as is 

typically encountered during the model building stage and 

achieves human level interpretation accuracy on such 

images and can be easily modified for other geologic 

interpretation tasks.  We give an indepth description of the 

key building blocks of SaltSeg and describe a novel 

integration of a β-variational autoencoder (VAE) branch 

with a standard encoder-decoder network that leads to 

significant boost in interpretation accuracy. We validate our 

results using real data images from surveys in the Gulf of 

Mexico.  

 

 

Introduction 

 

The architecture design of a convolutional neural network 

(CNN) plays a key role in the success of the segmentation 

or classification task that needs to be performed. Seismic 

images are inherently different from natural images (band-

limited nature and high noise level) and thus 

straightforward adaptations of CNN architectures usually 

leads to models that do not have the desired level of 

accuracy for successful production deployment. In this 

paper we describe a semantic segmentation network: 

SaltSeg, custom designed to work on seismic images.  

 

Architecture design 

 

SaltSeg’s base architecture follows a conventional encoder-

decoder (Ronneberger et al., 2015) set up where the 

encoder blocks are used to efficiently encode the key 

features of the input image, while the decoder blocks tries 

to to reconstruct a semantic segmentation map of the input 

image constrained by the encoder blocks. On top of this 

base architecture we add hypercolumns (Hariharan et al., 

2015) and a β-VAE branch (Higgins et al., 2017). In the 

following sections we describe in detail the key 

components of SaltSeg and the accuracy improvements 

achieved by using design components specific to seismic 

data. We use salt interpretation during the salt model 

building flow as our test case to demonstrate the robustness 

of SaltSeg. It is well known that migrated volumes during 

the salt model building stage are prone to be contaminated 

by strong migration artefacts, have low resolution and the 

imaging is often unclear or ambiguous and thus salt picking 

on such images can serve as a good yardstick to gauge the 

accuracy of CNN based geologic interpretation. We will 

show that SaltSeg achieves human level interpretation 

accuracy on such images. Further all results shown in the 

next few sections are blind test results , i.e., SaltSeg was 

trained on legacy surveys and applied on images from new 

surveys, no part of which was in the training set nor did the 

new survey have any overlap with the legacy surveys used 

to build the trining set. 

 

Encoder blocks 

 

The encoder part of SaltSeg is adapted from a powerful 

architecture used in biomedical image segmentation, 

LinkNet (Chaurasia et al, 2017). In contrast to the original 

LinkNet, which uses Resnet18 (He et al., 2016) as the 

encoder, we use a more powerful 34-layer deep Resnet34 

architecture. Our motivation to switch to a deeper and 

higher capacity archictecture stems from the complexity of 

the underlying segmentation task (working with noisy 

seismic images). The encoder reads in large image patches 

of size (384 X 384) and progressively downsamples the 

spatial dimensions while adding feature maps to efficiently 

encode the image’s key features. The top blue table in 

Figure 1 shows the details of each encoder block. Note that 

the final encoder block uses 512 feature maps to encode the 

original image. Figure 4 shows the inaccuracies in the raw 

probabilities predicted by a shallower (Figure 4b) version 

of our network compared to our deep architecture (Figure 

4c) for picking the salt flood mask on a complex sediment 

flood migrated image (Figure 2a). We note that a well 

designed deeper encoder network would almost always 

outperform its shallower counterpart especially when the 

task is complex.  

 

Decoder blocks 

 

SaltSeg has four decoder blocks maintaining symmetry 

with the encoder blocks used on the encoder side. The 

construction of each decoder block is identical and 

described in the left blue table in Figure 1. Unlike a 

conventional U-Net or encoder-decoder architecture each 

decoder block receives input from the corresponding 

encoder block as well as the encoder block below it (curved  

straight lines in red-box of Figure 1). This imposes 

additional constraints on the decoder’s upsampling 

operation. 

10.1190/segam2019-3216875.1
Page    2493

© 2019 SEG
SEG International Exposition and 89th Annual Meeting

D
ow

nl
oa

de
d 

08
/1

3/
19

 to
 1

92
.1

60
.5

6.
24

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



VAE constrained encoder-decoder CNN 

 

 

β-VAE Branch 

 

The key design aspect of SaltSeg is the use of a β-VAE 

branch (the rightmost branch in Figure 1). The purpose of 

this branch is to reconstruct the input image completely, i.e. 

it aims to learn the identity function. By forcing SaltSeg to 

perform this auxillary task, during training, of trying to 

reconstruct the image, the encoder is contrained to learn the 

most relevant features of the image such that the Identity 

mapping by the VAE branch can be done. Since the 

segmentation-decoder branch shares the same encoder 

block, better features learned by the encoder means better 

segmentation performance. The loss function used by 

SaltSeg is a weighted combination of the losses coming 

from the segmentation branch and the VAE branch, given 

by: 

         
 

The first two terms are the standard image segmentation 

losses coming from the segmentation branch which 

combines binary cross entropy (BCE) with the 

differentiable DICE score (Milletari et al., 2016). The last 

two terms are the losses from the VAE branch. The L2 loss 

is the pixel wise mean squared error between the input 

image and the reconstructed image, while LKL measures the 

distance between the distribution of the reconstruction and 

the input data via the Kullback-Liebler (KL) divergence. 

The KL divergence is weighted by a factor β>1 which 

encourages the VAE branch to prefer encoder reprentations 

that show greater disentaglement (less overlap in the 

feature maps), i.e. the encoder is forced to learn feature 

maps which are more diverse.    

 

Hypercolumns 

 

It is well known that as the images flows through the 

network, the spatial information is lost while semantic 

information is enriched via the increasing number of 

feature maps. However for complex, noisy images like 

those encountered in seismic imaging, we track the explicit 

spatial location of each pixel in the input image as it flows 

through the network using hypercolumns, which are a tall 

column vector (one for each sample in the image) that 

records the activations in the layers of the network above  

 

 

 
 
Figure 1: SaltSeg architecture: Red box is a standard Resne34 based encoder-decoder The leftmost branch is a hypercolumn branch that tracks spatial 

location of each pixel in the input image. The loss-layer in the standard encoder-decoder setup can be trained with various high entropy promoting 
regularizations. The right most branch is the β-VAE branch which draws samples from the final encoder layer to estimate high dimensional  mean 

and vaiance and uses this to reconstruct the input image fully. The tables indicate (top) encoder layer description, (left) units in each decoder block 

all of which are identical and (right) the operations performed to draw a sample mean and variance for the VAE branch. Conv:convolution, FC: fully 
connected.   
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Figure 2: Reconstruction capability of the VAE branch on salt flood migrated images from new survey never seen during training (a) original inline, 

(b) original crossline,  VAE reconstructed (c) inline and (d) crossline.  

 
 

Figure 3: Salt body picking on salt flood migrated images for automated salt building using networks (a,b) without and (c,d) with the VAE branch. 
The picked salt masks are overlaid on the seismic.   
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the target pixel. In SaltSeg these vectors are passed to the 

final sigmoid classification layer and act as attention 

weights where the relevant portions of the segmentation 

maps are weighted appropriately using these vectors before 

the sigmoid classifier is applied.  

 

Results 

 

Figure 2c and 2d show the excellent reconstruction 

capability of the VAE branch of the network when working 

with complex noisy seismic images indicating that SaltSeg 

has learnt the identity mapping successfully. Consequently 

interpretation accuracy is greatly improved as is seen in 

Figures 3c and 3d for salt body picking on salt flood 

migrated image. We achieve human level interpretation 

accuracy and thus SaltSeg can be used as one of the key 

building blocks for a fully automated deep learning based 

salt model building pipeline. The VAE branch’s 

reconstruction output also serves as an easy QC for the end-

user to monitor the performance of the CNN. At test time if 

the reconstruction produced by the network shows 

significant differences when compared to the input image, 

the end-user can be certain that the CNN’s training has not 

been optimal and suitable measures can be then taken to 

address the problem. The VAE branch can also be easily 

added to any existing encoder-decoder network and is 

extremely flexible to implement and use.  Although in this 

paper we have shown results for salt interpretation only, it 

is trivial to extend SaltSeg to other geologic interpretation 

tasks like fault picking and seismic facies classification. 

 

Conclusion 

 

We have described a CNN architecture designed to work 

specifically for noisy, band limited seismic images. The 

CNN architecture described in this paper uses design 

components that can handle the specific nuances that 

seismic images exhibit, typically not seen in natural 

images. We have demonstrated that we achieve human 

level interpretation accuracy for salt picking during the 

model building stage using SaltSeg on real world seismic 

images. Although we have used SaltSeg primarily for salt 

interpretation, it is flexible enough to be easily extended for 

other geologic interpretation tasks.  
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Figure 4: Salt-flood raw probabilities map picked on (a) sediment 
flood image by a (b) shallower and (c) deeper CNN. Shallower 

network has consistently more false positives and misses more 
subtle features easily.  
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