
MDIO: Open-source format for multidimensional energy data

Abstract 
MDIO is a fully open-source data storage format that enables 

computational workflows for various high-dimensional energy 
data sets including seismic data and wind models. Designed to 
be efficient and flexible, MDIO provides interoperable software 
infrastructure with existing energy data standards. It leverages 
an open-source format called Zarr to enable data usage in the 
cloud and on-premises file systems. An overview of the data model 
and schema for MDIO is provided, and an open-source Python 
library developed to work with MDIO data is demonstrated. We 
explain how MDIO supports different computational workflows 
and discuss applications for data management, seismic imaging, 
machine learning, wind resource assessment, and real-time seismic 
visualization. Overall, MDIO gives researchers, practitioners, 
and developers in the energy sector a standardized and open 
approach to managing and sharing multidimensional energy data.

Introduction
The energy industry relies heavily on data to make informed 

exploration, production, and asset management decisions. Different 
data formats facilitate scientific workflows depending on the 
business or application needs. SEG-Y (Society of Exploration 
Geophysicists, 2002) is a widely used data format for storing and 
sharing seismic data in the exploration geophysics industry. 
Academia introduced SEP (Claerbout, 1991), SU, and Madagascar 
(Fomel, 2013) formats and associated utility software to facilitate 
research in exploration seismic processing applications. Other 
formats for commercial seismic data workloads were developed 
and later open sourced, such as the Data Dictionary System 
(DDS), OpenVDS (Barré et al., 2022), and OpenZGY (OSDU, 
2023). NetCDF4 (Unidata, 2021) and HDF5 (The HDF Group, 
1997–2023) are popular formats in atmospheric and oceanic 
sciences, geophysics, and climate modeling. While we have 
endeavored to include popular binary storage formats, we acknowl-
edge potential omissions and invite readers to suggest any over-
looked alternatives for future updates.

This article explains the data model and schema for MDIO, 
a modern fully open-source energy data storage format. We review 
the input/output (I/O) access patterns for five applications: seismic 
data management, seismic data processing, machine learning, 
wind resource assessment, and seismic data visualization. We 
illustrate how the chunk size and data compression required by 
MDIO are essential for performance. We also review the setting 
of these parameters, with applications to both cloud object stores 
and local file systems. We highlight the performance considerations 
and potential cost savings of using data compression for storing 
data, with examples of defaults for seismic data applications. Based 
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on tools from the PyData ecosystem, MDIO can integrate with 
existing libraries to process and analyze scientific data without 
reimplementing many algorithms.

The MDIO format
MDIO is a format that self-describes seismic and wind data 

through Zarr (Miles et al., 2023) arrays and JSON metadata. 
Self-describing implies that the data and metadata within an 
MDIO data set are accessible directly from the file, eliminating 
the need for a separate database backend. It facilitates easier data 
sharing, collaboration, and analysis while providing useful defaults 
for lossless and lossy data compression. It also pads irregular data 
to form a regularized hypercube without incurring additional 
storage overhead while maintaining a mapping to the measured 
data. MDIO currently utilizes the Segyio (Equinor, 2023) library 
to parse SEG-Y files during ingestion and write text and binary 
headers during export. Our custom SEG-Y encoder features 
tree-based parallelism for efficiently writing the N-D header and 
trace arrays in a distributed system.

The library features a standard application programming 
interface (API) to read, write, and perform tensor operations 
on the data, abstracting the underlying file storage location and 
types such as network file storage or cloud object stores. MDIO 
includes converters for widely used file formats such as SEG-Y 
and NetCDF4.

Seismic and wind projects exhibit similar data patterns includ-
ing multiple data sets sharing a common grid, coordinate reference 
system information, and time/depth series of spatial data. MDIO 
flexibly represents these features in a container, allowing for either 
sequential ordering or granular chunking, depending on the 
workflow requirements.

MDIO specification
This section briefly overviews the seismic data specification 

stored as MDIO. We built the MDIO format as an extension of 
the Zarr protocol. The current specification (MDIO 0.2.10) is 
shown in Figure 1 and has the following key features:

• Global attributes: These attributes include information about 
the creation of the data set, details on the geometry, and global 
statistics such as minimum, maximum, root-mean-square, 
mean, and standard deviation values of samples.

• Metadata group: This group contains text, binary, trace head-
ers, and a live trace mask. The metadata elements hold addi-
tional information about the data such as acquisition param-
eters, processing history, and QC flags. Horizons associated 
with the seismic grid can also be stored together here. Horizon 
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data would best be stored as individual maps (2D arrays) within 
the metadata group, given the current MDIO schema.

• Data group: This group contains multidimensional arrays 
that users can divide into one or more chunks and store as 
Zarr arrays. These arrays contain seismic data or any other 
multidimensional array representing other attributes. The user 
can choose the size of the chunks and compress the data in a 
lossless or lossy manner. Supported compression algorithms 
include Blosc, Zstd (Collet and Kucherawy, 2018), LZ4 
(Collet, 2011), and ZFP (Lindstrom, 2014). 

MDIO provides optimized default chunk dimensions for 
several seismic and wind data types, simplifying the process for 
users. Table 1 compares the optimal chunking scenarios for 
different seismic data, heuristically tailored to various applications 
such as archival, orthogonal access, and visualization. Adjusting 
these settings can optimize performance in specific workflows. 
When using lossy compression options, it is feasible to enlarge 
the chunk dimensions for transferring more data segments simul-
taneously. However, maintaining the same chunk sizes could lead 
to faster loading times when an application has bandwidth limita-
tions. It is important to note that there is a tradeoff between chunk 

sizes and the number of chunks. This may affect performance if 
not tuned properly. We selected the following example chunk 
sizes, drawing from benchmarks and heuristics to accommodate 
three primary workloads: archival I/O performance (including 
data ingestion and export), the flexibility to rechunk for specialized 
cases in the future, and satisfactory visualization performance in 
the common directions in which users explore data. 

Configuring chunk sizes
Chunk dimensions in cloud object stores significantly influence 

the performance and cost of read and write operations. Key 
takeaways include

• Chunk dimensions should be aligned with access patterns to 
optimize performance.

• When using cloud object stores, aim for chunk sizes between 
4 and 8 MB.

• Larger chunk sizes are preferred in cloud object stores due to 
the following. (1) Object stores have higher latency per request. 
More data should be moved in one request. (2) Fewer API 
calls are more cost-effective.

General guidelines for any chunked data storage applicable 
to MDIO include

• In traditional parallel file systems, chunk sizes between 1 and 
2 MB are preferred.

• Chunk dimensions that are a power of two can benefit down-
stream workflows such as deep learning.

• Chunk sizes should be calibrated based on the compression 
ratio, and optimal sizes should be maintained.

In cases where ideal chunk sizes are unknown beforehand, 
employing isotropic or uniform chunking as an initial strategy is 
recommended. Isotropic chunking maintains equal chunk sizes 
in every direction, while uniform chunking divides the entire 
data domain into an equal number of chunks across all dimensions. 
These methods are a practical starting point for undefined access 
patterns, ensuring satisfactory performance for any reading direc-
tion. Nonetheless, to fully harness the advantages of chunked 
storage formats, it is recommended to optimize chunk sizes based 
on specific use cases and rechunk data sets when necessary.

Users can install MDIO, an open-source library under the 
Apache 2.0 license, through widely used channels such as Conda 
and Pip. 

Applications
Seismic data management. When managing and organizing 

seismic data sets stored in the SEG-Y format, manipulating the 
data can be challenging, mainly when 
dealing with many monolithic and large 
data sets. Data management operations 
involve indexing trace data headers of 
petabyte-scale data sets that need to 
support various spatial search queries. 
Relational databases are commonly used 

Figure 1. MDIO seismic data specification (v0.2.10). We show various access patterns for 
3D seismic data sets.

Table 1. Some examples of multiworkflow optimized chunk sizes for MDIO. CDP = common-depth point.

Data type Indices Chunk dimensions Chunk MB

3D, poststack Inline, crossline, sample 128, 128, 128 8 MB

2D, migrated CDP CDP, offset, sample 16, 64, 1024 4 MB

3D, prestack shot Shot, cable, channel, sample 8, 2, 128, 1024 8 MB
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to index trace headers, leading to increased costs and operational 
challenges. Indexing drives up costs due to database requirements 
and unnecessarily slow I/O-bound API requests. SEG-Y is designed 
for sequential access to trace and header data. In applications such 
as imaging and data visualization, the access patterns commonly 
devolve to making large numbers of requests to individual traces 
or header samples. This is not an optimal access pattern for cloud 
object stores. Demands to reduce costs while supporting scalability 
drive a growing need to access seismic data from anywhere, so 
first-class support of cloud-based storage makes sense. 

A cloud-native storage format such as MDIO allows users to 
fully utilize cloud technology. Scalability, lowering storage costs, 
governance, and data quality were our main principles when 
designing MDIO. Figure 2 presents MDIO ingestion benchmarks 
for small, medium, and large SEG-Y files, conducted using an 
Amazon Web Services (AWS) c6gd.12xlarge virtual machine 
(VM) in the cloud. The VM has 24 physical cores, each supporting 
two threads, resulting in 48 virtual CPUs. Additionally, the VM 
features 96 GB of memory and a network bandwidth of up to 
20 Gbps. Each run has been conducted five times, and the numbers 
shown are averaged. The spread of the benchmarks is shown at 
the tip of the histograms with the whisker plots. The experiment 
is set up as follows:

• Source SEG-Ys are located on the local solid-state drive (SSD).
• We ingested the data to two destinations: local SSD and cloud 

object store.

These steps are followed:

1) Ingest each file to MDIO on SSD and time it.
2) Ingest each file to MDIO on the object store and time it.
3) Repeat the first and second steps five times and average the 

timings.

We show the times under the bar graphs. We observe 8 to 9 
minutes to ingest a 450 GB seismic stack.

By default, MDIO saves approximately 41% of our storage 
costs using lossless Zstd compression on our petabyte-scale pre- 
and poststack seismic data sets, a significant cost savings. Even 
after compression, thanks to chunking, MDIO provides easy 
access for QC because the whole data set does not have to be 
decompressed all at once.

A typical workflow in accessing seismic data is to subset large 
volumes using a geospatial polygon. Multiple users accessing a large 
MDIO file, consisting of many chunks, may have entitlements to 
different areas of the same data set. By using the masking capabilities 
of MDIO, parts of the files that are not entitled could be obfuscated 
during data retrieval or encoded back to SEG-Y, only preserving 
the relevant traces and headers. The same logic could be applied to 
masking the data in time/depth. Figure 3 demonstrates this concept 
with the polygon and the optimal chunk layout.

Seismic streaming is another application supported by MDIO. 
A streaming service allows users to access data on demand. In 
this use case, MDIO and Dask (Rocklin, 2015) can provide a 
distributed high-performance backend to serve requests for data 
on an object store. A lightweight client library can then serve the 
user’s needs. While a prototype implementation of Async-Zarr 
(to be used in web applications) is publicly available, we chose the 
widely recognized and stable Dask library for handling distributed 
workloads. MDIO features a native Dask backend, presenting 
Zarr arrays as lazy Async-compatible Dask arrays.

Figure 2. SEG-Y to MDIO ingestion times in minutes and seconds. The source SEG-Y is on 
local SSD. We benchmark ingesting to MDIO on local SSD and compare it to ingesting MDIO 
directly to the object store. Figure 3. Concept of polygon limited seismic data retrieval with spatial chunks.
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Cloud object stores typically support large numbers of concur-
rent read and write operations on objects without performance 
degradation, but they can suffer a higher latency than other file 
storage solutions. The Zarr format naturally supports a high level 
of concurrency on read and write, optimizing its performance on 
object stores and potentially on a network file system. It is worth 
noting that performance can be limited by cloud service providers 
when thousands of machines access the same object. Arranging 
data in multiple chunks (preferably with randomized prefixes) 
further enhances parallelism (Google Cloud, 2023).

Figure 5 shows the throughput scaling of MDIO read and 
write of a 3D volume as a function of compute tasks for MDIO 
seismic data on Google Cloud Storage. The MDIO volume is 
read using Dask workers deployed on a Kubernetes cluster. 
Throughput is calculated by measuring the time to read the MDIO 
volume by scaling up the number of workers. Each worker contains 
a thread pool with two threads and 4 GB of memory. 

Manipulation of seismic data for imaging, processing, and 
visualization requires the platform to efficiently support a set of 
tensor operations on the data. These may include reading slices 
(e.g., inline, crossline, and depth slices for visualization), header 
manipulation, and others. By decomposing the data into chunks, 
I/O using the MDIO can be significantly more performant than 
other popular alternatives such as SEG-Y and derivatives. For 
example, a header manipulation or indexing operation on an 
entire SEG-Y data set would require at least one read for every 
trace in the data set. Accessing data from an object store may 
require many requests (one per trace) or some transmission of 
trace data irrelevant to the task. By contrast, MDIO would require 
only one or relatively few reads to the chunked headers, which 
is more efficient in almost all cases. Another example may be a 
read to a slice or arbitrary line through a seismic survey. At the 
same time, this can be efficient for formats such as SEG-Y in the 
sort order of the data, but it becomes increasingly inefficient to 
slice data orthogonally to this. With MDIO, the shape of the 
chunks can be designed to provide consistent performance for 
different access patterns. 

Most of the existing commercial seismic imaging and pro-
cessing software is written in C, C++, and Fortran. Libraries 
such as TensorStore (Maitin-Shepard and Leavitt, 2022) provide 
C++ implementations of the Zarr protocol. MDIO is also 
designed to work seamlessly with popular scientific libraries and 

Seismic imaging and processing. In seismic imaging and process-
ing, several factors determine the viability of the MDIO file format. 
There is a need to support both local high-performance computing 
and cloud computing. A file format must support high-performance 
read/write of seismic data, be interoperable with existing software, 
and be extensible with new technological developments.

Many seismic imaging and processing platforms adopt a hybrid 
model of on-premises computing with scalability to a private 
cloud. For this model to work effectively, the seismic data format 
must support both scenarios seamlessly, with applications poten-
tially needing to access data from a local file system, remote object 
store, or a combination of the two. MDIO provides a unified set 
of APIs, allowing data access and manipulation from both sources. 
As discussed, MDIO also supports both lossy and lossless data 
compression, which can reduce the overall storage costs associated 
with data and improve the system’s throughput. In algorithms 
such as POCS (Abma and Kabir, 2006), the data can be efficiently 
read in memory once, and the output can again be written to a 
chunk without locks, disk seeking, or many web requests. Figure 4 
demonstrates a processing application that computes windowed 
3D Fourier transforms.

In summary, chunk-aligned write operations can be safely 
executed in parallel across multiple processes and efficiently 
orchestrated using libraries such as Dask and MDIO. Nonetheless, 
it is crucial to recognize that despite the optimized access patterns, 
the I/O overhead may still be significant in specific workflows. 
Retaining the entire array or portions in memory could be more 
practical in such cases. For these situations, an in-memory variant 
of compressed MDIO could prove beneficial.

Figure 4. (a) Three-dimensional fast Fourier transforms are applied to 3D chunks, with 
an overlay of chunk boundaries on the seismic image. (b) The central wavenumber in the 
crossline direction (Kcrossline). The local coordinate axes for each chunk’s resulting FFT 
magnitude are Kinline versus frequency. Each of the FFT processes reads either a single 
chunk or multiple chunks, forming a larger chunk and significantly reducing disk I/O. Figure 5. MDIO read/write performance as a function of the number of compute tasks.
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frameworks such as NumPy and Dask. An imaging application 
employing Dask and Python with Zarr for 3D Marchenko 
imaging is discussed by Ravasi and Vasconcelos (2021). They 
found that the features of chunking, compression, multithread-
ing, and multiprocessing read/write concurrency supported by 
Zarr were advantageous. The authors also demonstrate that the 
integration of Zarr with Dask and Kubernetes allowed them to 
create a fault-tolerant application that they could deploy to the 
cloud, realizing potential cost savings of using “spot pricing” 
for their computing. 

Machine learning. The MDIO Python API is compatible 
with libraries such as NumPy, TensorFlow, and PyTorch, com-
monly used for the training and inference of machine and deep 
learning models. A data-loading pipeline is critical to training 
deep learning models with seismic data. Due to the seismic data 
set’s size, training on lines or patches is preferred to alleviate 
memory constraints. By using MDIO, patches can be extracted 
during training. This contrasts with an expensive data preprocess-
ing stage, where patches are extracted from seismic data and stored 
as JPG/PNG images. Because of this, there is little additional 
overhead in creating a data pipeline for training compared to 
working natively with either NumPy data or collections of images. 
MDIO also carries a set of summary statistics that can be used 
to standardize inputs to a machine learning model. This is an 
important step in most cases. 

An example application where MDIO was used to generate 
patches in the deep learning application is shown in Figure 6. 
Here, collections of patches are sampled from both a seismic 
survey and a set of swell noise recordings. A deep learning model 
is then trained to recognize the swell noise in the input seismic 
data and remove it (Valeciano et al., 2022). On inference, MDIO 
can sample similar patches from a seismic survey. The model then 
can remove noise automatically, reducing the time and expense 
of conventional time processing.

To show how MDIO can be used in model training pipelines, 
we provide a simplified example of a PyTorch (Paszke et al., 2019) 
data set, serving whole inlines from an MDIO file. The data set’s 
iteration logic can also be upgraded for more advanced slicing of 
crosslines, time slices, tiles, or volumetric data. The PyTorch data 
set object delegates I/O to MDIO (MDIOReader) in this code. 
The MDIO library then handles reading, slicing, and decoding 
the data from a seismic survey.

from torch.utils.data import Dataset

from mdio import MDIOReader

 

class InlineDataset(Dataset):

    def __init__(self, mdio_path):

        self.reader = MDIOReader(mdio_path)

 

    def __getitem__(self, idx):

        return self.reader[idx]

 

    def __len__(self):

        return self.reader.shape[0]

Wind resource assessment. Estimating the potential energy 
production of future wind farms is crucial in evaluating lease-
bidding costs, deployment expenses, and return on investment. 
The growing demand for renewable energy sources is driving 
demand for detailed wind models across the globe. Like oil and 
gas exploration, wind farm assessments merge prior knowledge 
with physics-based modeling. Sophisticated tools such as the 
Weather Research and Forecasting modeling system (Skamarock 
et al., 2019) generate weather models with wind speed, orientation, 
and auxiliary data sets. Terabytes of data per study area result 
from the spatiotemporal nature of these simulations, often involv-
ing multiple 4D tensors with time, elevation, latitude, and 

Figure 6. Generating seismic data tiles for training a deep learning model for swell noise removal using global data sets (from Valeciano et al., 2022). 
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longitude coordinates. High-resolution studies focus on small 
areas with 100 m spatial and 30-minute temporal resolutions, 
while regional studies typically employ 1 km spatial and 1-hour 
temporal resolutions. In both cases, terabytes of data must be 
processed for analytics.

Wind models estimate a complete historical record of wind 
conditions across a study area. The time series are often reduced 
(via averaging or computing histograms) into monthly and yearly 
aggregates across the domain to derive meaningful insights from 
the data sets. While many operations are inherently parallel and 
involve simple calculations, they necessitate orthogonal and semi-
random data access. The NetCDF4 format based on HDF5 is 
commonly used for storing climate data. By converting them to 
MDIO, we realize optimized I/O when computing a range of 
analytics. The primary calculations involve reducing monthly or 
daily grouped wind speed and direction data. Additionally, we fit 

distributions and power-law curves to the reduced statistics using 
an embarrassingly parallel approach. After transitioning to opti-
mized MDIO data sets, we leveraged the strengths of Zarr and 
Dask to distribute the processing more efficiently across a cluster 
of machines. This resulted in an approximately 100 times reduction 
in processing time compared to suboptimal NetCDF4 while 
maintaining the same resource allocation and software tooling. 
Figure 7 shows a sample of the aggregated statistics queried in 
real time by a web application with an MDIO backend.

Real-time visualization. As discussed in seismic imaging 
and data management applications, MDIO enables real-time 
visualization in web and desktop applications. Data can be 
streamed directly from the cloud to applications running on 
workstations, laptops, or mobile phones. For this use case, users 
typically want to be able to select and view 2D slices through 
large multidimensional seismic data sets. Common strategies 

Figure 7. Sample plots of aggregated statistics queried in real time by a web application from a cloud object store using an optimized MDIO file. (a) The plot illustrates the wind direction 
distribution for a time range (also known as a wind rose). (b) An hour-of-the-year plot spanning months. (c) Depicts wind speed distribution alongside the best-fit Weibull distribution (used 
to calculate likely power output). Finally, (d) demonstrates wind speed variation by height, which aids in calculating wind shear across different turbine hub heights. These statistics, and 
more, are calculated for every point in the domain data set and provided for further analysis.
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for making this process performant in all dimensions include 
creating transposed copies of the underlying data and employing 
concurrent multithreaded or multiprocess reads. Data compres-
sion is vital to minimize storage costs and reduce bottlenecks 
in streaming data to a client application. Zarr naturally supports 
all of these requirements (discussed by Ravasi and Vasconcelos, 
2021). Integration with Dask can make concurrency more cost 
effective in a cloud environment. Zarr chunking can also be 
configured to ensure that read performance is isotropic or opti-
mized for a specific direction.

Minimizing the transmitted data volume in all use cases is 
advantageous, particularly for visualization where full precision 
float data are not generally needed. In this case, it is beneficial 
to use lossy compression. Figure 8 shows the result of ZFP 
compression on seismic data. The data set shown is an angle 
stack of the Volve survey (courtesy of data owners, published 
under CC by 4.0 license). The 5:1 compressed data are perceptu-
ally lossless, and the 60 dB gained difference shows no signal 
leakage. The 25:1 compressed data show a minimal absolute 

difference, and the gained difference shows minor leakage. The 
data quality can be tuned to the downstream application needs 
and available bandwidth.

Usage examples
MDIO comes with a Python API for importing, exporting, 

and consuming data sets, accompanied by an easy-to-use and 
modular command line interface (CLI) designed for batch import 
and export workflows.

In this demonstration, we showcase its usage. Throughout the 
examples, we employ the openly accessible Teapot Dome filtered 
migration data set, courtesy of SEG, which can be downloaded 
from https://wiki.seg.org/wiki/Teapot_dome_3D_survey. 
Additional arguments and CLI options are available for importing, 
exporting, and accessing the data. For a more comprehensive look, 
we encourage readers to see the documentation page at https://
mdio.dev.

Installing and importing SEG-Y. MDIO can be installed 
using either Pip or Conda packaging tools:

Figure 8. Images (a) and (e) show the original (float32) Volve angle stack data set. (b) A lossy version with a 5:1 compression ratio. (c) The absolute difference between (a) and (b). (d) The 
difference (c) gained by 1000x (60 dB). (f) A 25:1 compressed version of (e). (g and h) Absolute and gained differences between (e) and (f)
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Using Pip:

pip install multidimio

Using Conda via the conda-forge channel:

conda install -c conda-forge multidimio

Using the Python API:

from mdio import mdio_to_segy, segy_to_mdio 

from mdio import MDIOReader

 

segy_to_mdio( 

   segy_path="filt_mig.sgy", 

   mdio_path_or_buffer="filt_mig.mdio", 

   index_bytes=(181, 185), 

   index_names=("inline", "crossline"), 

)

One can achieve the same result using the CLI:

mdio segy import \

    -i filt_mig.sgy \

    -o filt_mig.mdio \

    -loc 181,185 \

    -names inline,crossline

Reading data. Data can be accessed using an MDIOReader 
instance. This reader offers options to return trace data exclusively 
or a tuple of the live mask, headers, and trace data. There are two 
methods to initialize the reader:

# with live mask and headers 

mdio = MDIOReader( 

    "filt_mig.mdio",  

    return_metadata=True, 

) 

 

# without; returns just trace data 

mdio = MDIOReader("filt_mig.mdio")

After initializing the reader, we can access attributes such as

• mdio.text_header — Return the parsed text header.
• mdio.binary_header — Return the parsed binary header.
• mdio.grid — Return the grid information. More information 

can be queried: 
• mdio.grid.dim_names

• mdio.grid.get_min("inline") or  
mdio.grid.get_max("sample")

• mdio.grid.select_dim("crossline")

There are also some convenient methods to translate between 
real and logical coordinates (i.e., querying an inline). For example, 

the following snippet gives us the index for inline number 278, 
which can then be used to slice the data set accordingly:

index = int( 

    mdio.coord_to_index(278, dimensions="inline") 

)

Once we have the index, traditional NumPy and Python 
semantics can slice the data set. Based on how the reader was 
initialized, the data (or data + metadata) can be unpacked the 
following way. The headers and the live mask are read from the 
“metadata” group, whereas samples are read from the “data” group 
of MDIO.

# without metadata 

samples = mdio[index] 

 

# with metadata 

live, hdr, samp = mdio[index]

Export. Using the Python API:

 mdio_to_segy( 

   mdio_path_or_buffer="filt_mig.mdio", 

   output_segy_path="filt_mig_roundtrip.sgy", 

)

One can achieve the same result using the CLI:

mdio segy export \

    -i filt_mig.mdio \

    -o filt_mig_roundtrip.sgy

If we were using a cloud backend such as AWS S3, Azure 
Blob Storage, or Google Cloud Storage, we could simply provide 
the protocol and the prefix to the MDIO arrays. The following 
will ingest a local SEG-Y to AWS S3 using the Python API:

from mdio import MDIOReader, mdio_to_segy, 

segy_to_mdio

 

segy_to_mdio( 

   segy_path="filt_mig.sgy", 

   mdio_path_or_buffer="s3://prefix/filt_mig.mdio", 

   index_bytes=(181, 185), 

   index_names=("inline", "crossline"), 

)

mdio = MDIOReader("s3://prefix/filt_mig.mdio")

The same also applies to reading or exporting the data. Everything 
except the SEG-Y files can be directly accessed from the cloud 
provider. The SEG-Y files are not accessible from the cloud due 
to Segyio’s limitations. The authors are planning to adopt a cloud-
compatible SEG-Y reader once available.
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Conclusions
MDIO is a versatile and efficient library for managing 

multidimensional energy data that provides standardized storage 
and processing capabilities. Built as an extension of the Zarr 
protocol, it simplifies data sharing, collaboration, and analysis 
while offering optimized default chunk dimensions for various 
seismic and wind data types. By addressing the challenges of 
data management and cloud object storage, MDIO is a valuable 
resource for researchers, practitioners, and developers in the 
energy sector. Under the Apache 2.0 license, the actively main-
tained open-source library installs easily through popular chan-
nels such as Conda and Pip. 
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