
MDIO: Open-source format for multidimensional energy data

Abstract
MDIO is a fully open-source data storage format that enables

computational workflows for various high-dimensional energy
data sets including seismic data and wind models. Designed to
be efficient and flexible, MDIO provides interoperable software
infrastructure with existing energy data standards. It leverages
an open-source format called Zarr to enable data usage in the
cloud and on-premises file systems. An overview of the data model
and schema for MDIO is provided, and an open-source Python
library developed to work with MDIO data is demonstrated. We
explain how MDIO supports different computational workflows
and discuss applications for data management, seismic imaging,
machine learning, wind resource assessment, and real-time seismic
visualization. Overall, MDIO gives researchers, practitioners,
and developers in the energy sector a standardized and open
approach to managing and sharing multidimensional energy data.

Introduction
The energy industry relies heavily on data to make informed

exploration, production, and asset management decisions. Different
data formats facilitate scientific workflows depending on the
business or application needs. SEG-Y (Society of Exploration
Geophysicists, 2002) is a widely used data format for storing and
sharing seismic data in the exploration geophysics industry.
Academia introduced SEP (Claerbout, 1991), SU, and Madagascar
(Fomel, 2013) formats and associated utility software to facilitate
research in exploration seismic processing applications. Other
formats for commercial seismic data workloads were developed
and later open sourced, such as the Data Dictionary System
(DDS), OpenVDS (Barré et al., 2022), and OpenZGY (OSDU,
2023). NetCDF4 (Unidata, 2021) and HDF5 (The HDF Group,
1997–2023) are popular formats in atmospheric and oceanic
sciences, geophysics, and climate modeling. While we have
endeavored to include popular binary storage formats, we acknowl-
edge potential omissions and invite readers to suggest any over-
looked alternatives for future updates.

This article explains the data model and schema for MDIO,
a modern fully open-source energy data storage format. We review
the input/output (I/O) access patterns for five applications: seismic
data management, seismic data processing, machine learning,
wind resource assessment, and seismic data visualization. We
illustrate how the chunk size and data compression required by
MDIO are essential for performance. We also review the setting
of these parameters, with applications to both cloud object stores
and local file systems. We highlight the performance considerations
and potential cost savings of using data compression for storing
data, with examples of defaults for seismic data applications. Based

Altay Sansal1, Sribharath Kainkaryam1, Ben Lasscock1, and Alejandro Valenciano1

on tools from the PyData ecosystem, MDIO can integrate with
existing libraries to process and analyze scientific data without
reimplementing many algorithms.

The MDIO format
MDIO is a format that self-describes seismic and wind data

through Zarr (Miles et al., 2023) arrays and JSON metadata.
Self-describing implies that the data and metadata within an
MDIO data set are accessible directly from the file, eliminating
the need for a separate database backend. It facilitates easier data
sharing, collaboration, and analysis while providing useful defaults
for lossless and lossy data compression. It also pads irregular data
to form a regularized hypercube without incurring additional
storage overhead while maintaining a mapping to the measured
data. MDIO currently utilizes the Segyio (Equinor, 2023) library
to parse SEG-Y files during ingestion and write text and binary
headers during export. Our custom SEG-Y encoder features
tree-based parallelism for efficiently writing the N-D header and
trace arrays in a distributed system.

The library features a standard application programming
interface (API) to read, write, and perform tensor operations
on the data, abstracting the underlying file storage location and
types such as network file storage or cloud object stores. MDIO
includes converters for widely used file formats such as SEG-Y
and NetCDF4.

Seismic and wind projects exhibit similar data patterns includ-
ing multiple data sets sharing a common grid, coordinate reference
system information, and time/depth series of spatial data. MDIO
flexibly represents these features in a container, allowing for either
sequential ordering or granular chunking, depending on the
workflow requirements.

MDIO specification
This section briefly overviews the seismic data specification

stored as MDIO. We built the MDIO format as an extension of
the Zarr protocol. The current specification (MDIO 0.2.10) is
shown in Figure 1 and has the following key features:

• Global attributes: These attributes include information about
the creation of the data set, details on the geometry, and global
statistics such as minimum, maximum, root-mean-square,
mean, and standard deviation values of samples.

• Metadata group: This group contains text, binary, trace head-
ers, and a live trace mask. The metadata elements hold addi-
tional information about the data such as acquisition param-
eters, processing history, and QC flags. Horizons associated
with the seismic grid can also be stored together here. Horizon

1TGS, Houston, Texas, USA. E-mail: altay.sansal@tgs.com; sribharath.kainkaryam@tgs.com; ben.lasscock@tgs.com; alejandro.valenciano@tgs.com.

https://doi.org/10.1190/tle42070457.1

Special Section: Digitalization in energy457 The Leading Edge July 2023

data would best be stored as individual maps (2D arrays) within
the metadata group, given the current MDIO schema.

• Data group: This group contains multidimensional arrays
that users can divide into one or more chunks and store as
Zarr arrays. These arrays contain seismic data or any other
multidimensional array representing other attributes. The user
can choose the size of the chunks and compress the data in a
lossless or lossy manner. Supported compression algorithms
include Blosc, Zstd (Collet and Kucherawy, 2018), LZ4
(Collet, 2011), and ZFP (Lindstrom, 2014).

MDIO provides optimized default chunk dimensions for
several seismic and wind data types, simplifying the process for
users. Table 1 compares the optimal chunking scenarios for
different seismic data, heuristically tailored to various applications
such as archival, orthogonal access, and visualization. Adjusting
these settings can optimize performance in specific workflows.
When using lossy compression options, it is feasible to enlarge
the chunk dimensions for transferring more data segments simul-
taneously. However, maintaining the same chunk sizes could lead
to faster loading times when an application has bandwidth limita-
tions. It is important to note that there is a tradeoff between chunk

sizes and the number of chunks. This may affect performance if
not tuned properly. We selected the following example chunk
sizes, drawing from benchmarks and heuristics to accommodate
three primary workloads: archival I/O performance (including
data ingestion and export), the flexibility to rechunk for specialized
cases in the future, and satisfactory visualization performance in
the common directions in which users explore data.

Configuring chunk sizes
Chunk dimensions in cloud object stores significantly influence

the performance and cost of read and write operations. Key
takeaways include

• Chunk dimensions should be aligned with access patterns to
optimize performance.

• When using cloud object stores, aim for chunk sizes between
4 and 8 MB.

• Larger chunk sizes are preferred in cloud object stores due to
the following. (1) Object stores have higher latency per request.
More data should be moved in one request. (2) Fewer API
calls are more cost-effective.

General guidelines for any chunked data storage applicable
to MDIO include

• In traditional parallel file systems, chunk sizes between 1 and
2 MB are preferred.

• Chunk dimensions that are a power of two can benefit down-
stream workflows such as deep learning.

• Chunk sizes should be calibrated based on the compression
ratio, and optimal sizes should be maintained.

In cases where ideal chunk sizes are unknown beforehand,
employing isotropic or uniform chunking as an initial strategy is
recommended. Isotropic chunking maintains equal chunk sizes
in every direction, while uniform chunking divides the entire
data domain into an equal number of chunks across all dimensions.
These methods are a practical starting point for undefined access
patterns, ensuring satisfactory performance for any reading direc-
tion. Nonetheless, to fully harness the advantages of chunked
storage formats, it is recommended to optimize chunk sizes based
on specific use cases and rechunk data sets when necessary.

Users can install MDIO, an open-source library under the
Apache 2.0 license, through widely used channels such as Conda
and Pip.

Applications
Seismic data management. When managing and organizing

seismic data sets stored in the SEG-Y format, manipulating the
data can be challenging, mainly when
dealing with many monolithic and large
data sets. Data management operations
involve indexing trace data headers of
petabyte-scale data sets that need to
support various spatial search queries.
Relational databases are commonly used

Figure 1. MDIO seismic data specification (v0.2.10). We show various access patterns for
3D seismic data sets.

Table 1. Some examples of multiworkflow optimized chunk sizes for MDIO. CDP = common-depth point.

Data type Indices Chunk dimensions Chunk MB

3D, poststack Inline, crossline, sample 128, 128, 128 8 MB

2D, migrated CDP CDP, offset, sample 16, 64, 1024 4 MB

3D, prestack shot Shot, cable, channel, sample 8, 2, 128, 1024 8 MB

Special Section: Digitalization in energy458 The Leading Edge July 2023

to index trace headers, leading to increased costs and operational
challenges. Indexing drives up costs due to database requirements
and unnecessarily slow I/O-bound API requests. SEG-Y is designed
for sequential access to trace and header data. In applications such
as imaging and data visualization, the access patterns commonly
devolve to making large numbers of requests to individual traces
or header samples. This is not an optimal access pattern for cloud
object stores. Demands to reduce costs while supporting scalability
drive a growing need to access seismic data from anywhere, so
first-class support of cloud-based storage makes sense.

A cloud-native storage format such as MDIO allows users to
fully utilize cloud technology. Scalability, lowering storage costs,
governance, and data quality were our main principles when
designing MDIO. Figure 2 presents MDIO ingestion benchmarks
for small, medium, and large SEG-Y files, conducted using an
Amazon Web Services (AWS) c6gd.12xlarge virtual machine
(VM) in the cloud. The VM has 24 physical cores, each supporting
two threads, resulting in 48 virtual CPUs. Additionally, the VM
features 96 GB of memory and a network bandwidth of up to
20 Gbps. Each run has been conducted five times, and the numbers
shown are averaged. The spread of the benchmarks is shown at
the tip of the histograms with the whisker plots. The experiment
is set up as follows:

• Source SEG-Ys are located on the local solid-state drive (SSD).
• We ingested the data to two destinations: local SSD and cloud

object store.

These steps are followed:

1) Ingest each file to MDIO on SSD and time it.
2) Ingest each file to MDIO on the object store and time it.
3) Repeat the first and second steps five times and average the

timings.

We show the times under the bar graphs. We observe 8 to 9
minutes to ingest a 450 GB seismic stack.

By default, MDIO saves approximately 41% of our storage
costs using lossless Zstd compression on our petabyte-scale pre-
and poststack seismic data sets, a significant cost savings. Even
after compression, thanks to chunking, MDIO provides easy
access for QC because the whole data set does not have to be
decompressed all at once.

A typical workflow in accessing seismic data is to subset large
volumes using a geospatial polygon. Multiple users accessing a large
MDIO file, consisting of many chunks, may have entitlements to
different areas of the same data set. By using the masking capabilities
of MDIO, parts of the files that are not entitled could be obfuscated
during data retrieval or encoded back to SEG-Y, only preserving
the relevant traces and headers. The same logic could be applied to
masking the data in time/depth. Figure 3 demonstrates this concept
with the polygon and the optimal chunk layout.

Seismic streaming is another application supported by MDIO.
A streaming service allows users to access data on demand. In
this use case, MDIO and Dask (Rocklin, 2015) can provide a
distributed high-performance backend to serve requests for data
on an object store. A lightweight client library can then serve the
user’s needs. While a prototype implementation of Async-Zarr
(to be used in web applications) is publicly available, we chose the
widely recognized and stable Dask library for handling distributed
workloads. MDIO features a native Dask backend, presenting
Zarr arrays as lazy Async-compatible Dask arrays.

Figure 2. SEG-Y to MDIO ingestion times in minutes and seconds. The source SEG-Y is on
local SSD. We benchmark ingesting to MDIO on local SSD and compare it to ingesting MDIO
directly to the object store. Figure 3. Concept of polygon limited seismic data retrieval with spatial chunks.

Special Section: Digitalization in energy July 2023 The Leading Edge 459

Cloud object stores typically support large numbers of concur-
rent read and write operations on objects without performance
degradation, but they can suffer a higher latency than other file
storage solutions. The Zarr format naturally supports a high level
of concurrency on read and write, optimizing its performance on
object stores and potentially on a network file system. It is worth
noting that performance can be limited by cloud service providers
when thousands of machines access the same object. Arranging
data in multiple chunks (preferably with randomized prefixes)
further enhances parallelism (Google Cloud, 2023).

Figure 5 shows the throughput scaling of MDIO read and
write of a 3D volume as a function of compute tasks for MDIO
seismic data on Google Cloud Storage. The MDIO volume is
read using Dask workers deployed on a Kubernetes cluster.
Throughput is calculated by measuring the time to read the MDIO
volume by scaling up the number of workers. Each worker contains
a thread pool with two threads and 4 GB of memory.

Manipulation of seismic data for imaging, processing, and
visualization requires the platform to efficiently support a set of
tensor operations on the data. These may include reading slices
(e.g., inline, crossline, and depth slices for visualization), header
manipulation, and others. By decomposing the data into chunks,
I/O using the MDIO can be significantly more performant than
other popular alternatives such as SEG-Y and derivatives. For
example, a header manipulation or indexing operation on an
entire SEG-Y data set would require at least one read for every
trace in the data set. Accessing data from an object store may
require many requests (one per trace) or some transmission of
trace data irrelevant to the task. By contrast, MDIO would require
only one or relatively few reads to the chunked headers, which
is more efficient in almost all cases. Another example may be a
read to a slice or arbitrary line through a seismic survey. At the
same time, this can be efficient for formats such as SEG-Y in the
sort order of the data, but it becomes increasingly inefficient to
slice data orthogonally to this. With MDIO, the shape of the
chunks can be designed to provide consistent performance for
different access patterns.

Most of the existing commercial seismic imaging and pro-
cessing software is written in C, C++, and Fortran. Libraries
such as TensorStore (Maitin-Shepard and Leavitt, 2022) provide
C++ implementations of the Zarr protocol. MDIO is also
designed to work seamlessly with popular scientific libraries and

Seismic imaging and processing. In seismic imaging and process-
ing, several factors determine the viability of the MDIO file format.
There is a need to support both local high-performance computing
and cloud computing. A file format must support high-performance
read/write of seismic data, be interoperable with existing software,
and be extensible with new technological developments.

Many seismic imaging and processing platforms adopt a hybrid
model of on-premises computing with scalability to a private
cloud. For this model to work effectively, the seismic data format
must support both scenarios seamlessly, with applications poten-
tially needing to access data from a local file system, remote object
store, or a combination of the two. MDIO provides a unified set
of APIs, allowing data access and manipulation from both sources.
As discussed, MDIO also supports both lossy and lossless data
compression, which can reduce the overall storage costs associated
with data and improve the system’s throughput. In algorithms
such as POCS (Abma and Kabir, 2006), the data can be efficiently
read in memory once, and the output can again be written to a
chunk without locks, disk seeking, or many web requests. Figure 4
demonstrates a processing application that computes windowed
3D Fourier transforms.

In summary, chunk-aligned write operations can be safely
executed in parallel across multiple processes and efficiently
orchestrated using libraries such as Dask and MDIO. Nonetheless,
it is crucial to recognize that despite the optimized access patterns,
the I/O overhead may still be significant in specific workflows.
Retaining the entire array or portions in memory could be more
practical in such cases. For these situations, an in-memory variant
of compressed MDIO could prove beneficial.

Figure 4. (a) Three-dimensional fast Fourier transforms are applied to 3D chunks, with
an overlay of chunk boundaries on the seismic image. (b) The central wavenumber in the
crossline direction (Kcrossline). The local coordinate axes for each chunk’s resulting FFT
magnitude are Kinline versus frequency. Each of the FFT processes reads either a single
chunk or multiple chunks, forming a larger chunk and significantly reducing disk I/O. Figure 5. MDIO read/write performance as a function of the number of compute tasks.

Special Section: Digitalization in energy460 The Leading Edge July 2023

frameworks such as NumPy and Dask. An imaging application
employing Dask and Python with Zarr for 3D Marchenko
imaging is discussed by Ravasi and Vasconcelos (2021). They
found that the features of chunking, compression, multithread-
ing, and multiprocessing read/write concurrency supported by
Zarr were advantageous. The authors also demonstrate that the
integration of Zarr with Dask and Kubernetes allowed them to
create a fault-tolerant application that they could deploy to the
cloud, realizing potential cost savings of using “spot pricing”
for their computing.

Machine learning. The MDIO Python API is compatible
with libraries such as NumPy, TensorFlow, and PyTorch, com-
monly used for the training and inference of machine and deep
learning models. A data-loading pipeline is critical to training
deep learning models with seismic data. Due to the seismic data
set’s size, training on lines or patches is preferred to alleviate
memory constraints. By using MDIO, patches can be extracted
during training. This contrasts with an expensive data preprocess-
ing stage, where patches are extracted from seismic data and stored
as JPG/PNG images. Because of this, there is little additional
overhead in creating a data pipeline for training compared to
working natively with either NumPy data or collections of images.
MDIO also carries a set of summary statistics that can be used
to standardize inputs to a machine learning model. This is an
important step in most cases.

An example application where MDIO was used to generate
patches in the deep learning application is shown in Figure 6.
Here, collections of patches are sampled from both a seismic
survey and a set of swell noise recordings. A deep learning model
is then trained to recognize the swell noise in the input seismic
data and remove it (Valeciano et al., 2022). On inference, MDIO
can sample similar patches from a seismic survey. The model then
can remove noise automatically, reducing the time and expense
of conventional time processing.

To show how MDIO can be used in model training pipelines,
we provide a simplified example of a PyTorch (Paszke et al., 2019)
data set, serving whole inlines from an MDIO file. The data set’s
iteration logic can also be upgraded for more advanced slicing of
crosslines, time slices, tiles, or volumetric data. The PyTorch data
set object delegates I/O to MDIO (MDIOReader) in this code.
The MDIO library then handles reading, slicing, and decoding
the data from a seismic survey.

from torch.utils.data import Dataset

from mdio import MDIOReader

class InlineDataset(Dataset):

 def __init__(self, mdio_path):

 self.reader = MDIOReader(mdio_path)

 def __getitem__(self, idx):

 return self.reader[idx]

 def __len__(self):

 return self.reader.shape[0]

Wind resource assessment. Estimating the potential energy
production of future wind farms is crucial in evaluating lease-
bidding costs, deployment expenses, and return on investment.
The growing demand for renewable energy sources is driving
demand for detailed wind models across the globe. Like oil and
gas exploration, wind farm assessments merge prior knowledge
with physics-based modeling. Sophisticated tools such as the
Weather Research and Forecasting modeling system (Skamarock
et al., 2019) generate weather models with wind speed, orientation,
and auxiliary data sets. Terabytes of data per study area result
from the spatiotemporal nature of these simulations, often involv-
ing multiple 4D tensors with time, elevation, latitude, and

Figure 6. Generating seismic data tiles for training a deep learning model for swell noise removal using global data sets (from Valeciano et al., 2022).

Special Section: Digitalization in energy July 2023 The Leading Edge 461

longitude coordinates. High-resolution studies focus on small
areas with 100 m spatial and 30-minute temporal resolutions,
while regional studies typically employ 1 km spatial and 1-hour
temporal resolutions. In both cases, terabytes of data must be
processed for analytics.

Wind models estimate a complete historical record of wind
conditions across a study area. The time series are often reduced
(via averaging or computing histograms) into monthly and yearly
aggregates across the domain to derive meaningful insights from
the data sets. While many operations are inherently parallel and
involve simple calculations, they necessitate orthogonal and semi-
random data access. The NetCDF4 format based on HDF5 is
commonly used for storing climate data. By converting them to
MDIO, we realize optimized I/O when computing a range of
analytics. The primary calculations involve reducing monthly or
daily grouped wind speed and direction data. Additionally, we fit

distributions and power-law curves to the reduced statistics using
an embarrassingly parallel approach. After transitioning to opti-
mized MDIO data sets, we leveraged the strengths of Zarr and
Dask to distribute the processing more efficiently across a cluster
of machines. This resulted in an approximately 100 times reduction
in processing time compared to suboptimal NetCDF4 while
maintaining the same resource allocation and software tooling.
Figure 7 shows a sample of the aggregated statistics queried in
real time by a web application with an MDIO backend.

Real-time visualization. As discussed in seismic imaging
and data management applications, MDIO enables real-time
visualization in web and desktop applications. Data can be
streamed directly from the cloud to applications running on
workstations, laptops, or mobile phones. For this use case, users
typically want to be able to select and view 2D slices through
large multidimensional seismic data sets. Common strategies

Figure 7. Sample plots of aggregated statistics queried in real time by a web application from a cloud object store using an optimized MDIO file. (a) The plot illustrates the wind direction
distribution for a time range (also known as a wind rose). (b) An hour-of-the-year plot spanning months. (c) Depicts wind speed distribution alongside the best-fit Weibull distribution (used
to calculate likely power output). Finally, (d) demonstrates wind speed variation by height, which aids in calculating wind shear across different turbine hub heights. These statistics, and
more, are calculated for every point in the domain data set and provided for further analysis.

Special Section: Digitalization in energy462 The Leading Edge July 2023

for making this process performant in all dimensions include
creating transposed copies of the underlying data and employing
concurrent multithreaded or multiprocess reads. Data compres-
sion is vital to minimize storage costs and reduce bottlenecks
in streaming data to a client application. Zarr naturally supports
all of these requirements (discussed by Ravasi and Vasconcelos,
2021). Integration with Dask can make concurrency more cost
effective in a cloud environment. Zarr chunking can also be
configured to ensure that read performance is isotropic or opti-
mized for a specific direction.

Minimizing the transmitted data volume in all use cases is
advantageous, particularly for visualization where full precision
float data are not generally needed. In this case, it is beneficial
to use lossy compression. Figure 8 shows the result of ZFP
compression on seismic data. The data set shown is an angle
stack of the Volve survey (courtesy of data owners, published
under CC by 4.0 license). The 5:1 compressed data are perceptu-
ally lossless, and the 60 dB gained difference shows no signal
leakage. The 25:1 compressed data show a minimal absolute

difference, and the gained difference shows minor leakage. The
data quality can be tuned to the downstream application needs
and available bandwidth.

Usage examples
MDIO comes with a Python API for importing, exporting,

and consuming data sets, accompanied by an easy-to-use and
modular command line interface (CLI) designed for batch import
and export workflows.

In this demonstration, we showcase its usage. Throughout the
examples, we employ the openly accessible Teapot Dome filtered
migration data set, courtesy of SEG, which can be downloaded
from https://wiki.seg.org/wiki/Teapot_dome_3D_survey.
Additional arguments and CLI options are available for importing,
exporting, and accessing the data. For a more comprehensive look,
we encourage readers to see the documentation page at https://
mdio.dev.

Installing and importing SEG-Y. MDIO can be installed
using either Pip or Conda packaging tools:

Figure 8. Images (a) and (e) show the original (float32) Volve angle stack data set. (b) A lossy version with a 5:1 compression ratio. (c) The absolute difference between (a) and (b). (d) The
difference (c) gained by 1000x (60 dB). (f) A 25:1 compressed version of (e). (g and h) Absolute and gained differences between (e) and (f)

Special Section: Digitalization in energy July 2023 The Leading Edge 463

Using Pip:

pip install multidimio

Using Conda via the conda-forge channel:

conda install -c conda-forge multidimio

Using the Python API:

from mdio import mdio_to_segy, segy_to_mdio

from mdio import MDIOReader

segy_to_mdio(

 segy_path="filt_mig.sgy",

 mdio_path_or_buffer="filt_mig.mdio",

 index_bytes=(181, 185),

 index_names=("inline", "crossline"),

)

One can achieve the same result using the CLI:

mdio segy import \

 -i filt_mig.sgy \

 -o filt_mig.mdio \

 -loc 181,185 \

 -names inline,crossline

Reading data. Data can be accessed using an MDIOReader
instance. This reader offers options to return trace data exclusively
or a tuple of the live mask, headers, and trace data. There are two
methods to initialize the reader:

with live mask and headers

mdio = MDIOReader(

 "filt_mig.mdio",

 return_metadata=True,

)

without; returns just trace data

mdio = MDIOReader("filt_mig.mdio")

After initializing the reader, we can access attributes such as

• mdio.text_header — Return the parsed text header.
• mdio.binary_header — Return the parsed binary header.
• mdio.grid — Return the grid information. More information

can be queried:
• mdio.grid.dim_names

• mdio.grid.get_min("inline") or
mdio.grid.get_max("sample")

• mdio.grid.select_dim("crossline")

There are also some convenient methods to translate between
real and logical coordinates (i.e., querying an inline). For example,

the following snippet gives us the index for inline number 278,
which can then be used to slice the data set accordingly:

index = int(

 mdio.coord_to_index(278, dimensions="inline")

)

Once we have the index, traditional NumPy and Python
semantics can slice the data set. Based on how the reader was
initialized, the data (or data + metadata) can be unpacked the
following way. The headers and the live mask are read from the
“metadata” group, whereas samples are read from the “data” group
of MDIO.

without metadata

samples = mdio[index]

with metadata

live, hdr, samp = mdio[index]

Export. Using the Python API:

 mdio_to_segy(

 mdio_path_or_buffer="filt_mig.mdio",

 output_segy_path="filt_mig_roundtrip.sgy",

)

One can achieve the same result using the CLI:

mdio segy export \

 -i filt_mig.mdio \

 -o filt_mig_roundtrip.sgy

If we were using a cloud backend such as AWS S3, Azure
Blob Storage, or Google Cloud Storage, we could simply provide
the protocol and the prefix to the MDIO arrays. The following
will ingest a local SEG-Y to AWS S3 using the Python API:

from mdio import MDIOReader, mdio_to_segy,

segy_to_mdio

segy_to_mdio(

 segy_path="filt_mig.sgy",

 mdio_path_or_buffer="s3://prefix/filt_mig.mdio",

 index_bytes=(181, 185),

 index_names=("inline", "crossline"),

)

mdio = MDIOReader("s3://prefix/filt_mig.mdio")

The same also applies to reading or exporting the data. Everything
except the SEG-Y files can be directly accessed from the cloud
provider. The SEG-Y files are not accessible from the cloud due
to Segyio’s limitations. The authors are planning to adopt a cloud-
compatible SEG-Y reader once available.

Special Section: Digitalization in energy464 The Leading Edge July 2023

Conclusions
MDIO is a versatile and efficient library for managing

multidimensional energy data that provides standardized storage
and processing capabilities. Built as an extension of the Zarr
protocol, it simplifies data sharing, collaboration, and analysis
while offering optimized default chunk dimensions for various
seismic and wind data types. By addressing the challenges of
data management and cloud object storage, MDIO is a valuable
resource for researchers, practitioners, and developers in the
energy sector. Under the Apache 2.0 license, the actively main-
tained open-source library installs easily through popular chan-
nels such as Conda and Pip.

Acknowledgments
We thank Sathiya Namasivayam, Charles Nguyen, Mohammad

Nuruzzaman, Cable Warren, and the rest of the TGS Data and
Analytics team for their valuable discussions and support. We
also appreciate TGS for permitting us to publish this material.
Additionally, we acknowledge the organizations and companies
that generously provide public data sets and open-source tools for
the community’s benefit. We thank Vladimir Kazei, Matteo
Ravasi, and an anonymous reviewer whose insightful comments
improved this manuscript.

Data and materials availability
Data associated with this research are confidential and cannot

be released.

Corresponding author: alejandro.valenciano@tgs.com

References
Abma, R., and N. Kabir, 2006, 3D interpolation of irregular data with

a POCS algorithm: Geophysics, 71, no. 6, E91–E97, https://doi.
org/10.1190/1.2356088.

Barré, M., S. Walley, V. Savajol, J. Deng, C. Rhodes, A. van Welden,
P. Endresen, M. Storm-Olsen, and A. James, 2022, Implementation
of cloud-ready technology designed to address longstanding data
interoperability and accessibility issues through the use of a compre-
hensive semi-automated seismic interpretation workflow: Second
International Meeting for Applied Geoscience & Energy, SEG/
AAPG, Expanded Abstracts, 1477–1481, https://doi.org/10.1190/
image2022-3743148.1.

Claerbout, J., 1991, Introduction to Seplib and SEP utility software:
SEP-70: Stanford Exploration Project, 413–436.

Collet, Y., 2011, LZ4: http://lz4.github.io/lz4/.
Collet, Y., and M. Kucherawy, 2018, Zstandard Compression and the

application/zstd media type: RFC Editor.
Equinor, 2023, Segyio: Fast Python library for SEGY files, https://

github.com/equinor/segyio, accessed 28 March 2023.
Fomel, S., 2013, Revisiting SEP tour with Madagascar and SCons:

Journal of Open Research Software.
Google Cloud, 2023, Request rate and access distribution guidelines,

accessed 21 March 2023, https://cloud.google.com/storage/docs/
request-rate.

Lindstrom, P., 2014, Fixed-rate compressed floating-point arrays: IEEE
Transactions on Visualization and Computer Graphics, 20, no. 12,
2674–2683, https://doi.org/10.1109/TVCG.2014.2346458.

Maitin-Shepard, J., and L. Leavitt, 2022, TensorStore for high-perfor-
mance, scalable array storage, https://ai.googleblog.com/2022/09/
tensorstore-for-high-performance.html, accessed 1 June 2023.

Miles, A., jakirkham, M. Bussonnier, J. Moore, D. P. Orfanos, A. Fulton,
J. Bourbeau, et al., 2023, zarr-developers/zarr-python: v2.14.1:
Zenodo, https://doi.org/10.5281/zenodo.7633154.

OSDU, 2023, Open ZGY, https://community.opengroup.org/osdu/
platform/domain-data-mgmt-services/seismic/open-zgy, accessed 21
March 2023.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, et al., 2019, PyTorch: An imperative style, high-performance
deep learning library: Cornell University, https://doi.org/10.48550/
arXiv.1912.01703.

Ravasi, M., and I. Vasconcelos, 2021, An open-source framework for
the implementation of large-scale integral operators with flexible,
modern high-performance computing solutions: Enabling 3D
Marchenko imaging by least-squares inversion: Geophysics, 86, no.
5, WC177–WC194, https://doi.org/10.1190/geo2020-0796.1.

Rocklin, M., 2015, Dask: Parallel computation with blocked algorithms
and task scheduling: Presented at the 14th Python in Science
Conference.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner,
W. Wang, et al., 2019, A description of the advanced research WRF
Model version 4.1: NCAR Technical Notes, https://doi.
org/10.5065/1dfh-6p97.

Society of Exploration Geophysicists, 2002, SEG Y rev 1 data exchange
format, https://library.seg.org/pb-assets/technical-standards/
seg_y_rev1-1686080991247.pdf, accessed 1 June 2023.

The HDF Group, 1997–2023, Hierarchical Data Format, version 5,
1997–2023, https://www.hdfgroup.org/HDF5.

Unidata, 2021, Network common data form (NetCDF): Unidata, https://
doi.org/10.5065/D6H70CW6.

Valeciano, A., O. Brusova, and C. Cheng, 2022, Efficient swell noise
removal using a global deep neural network model: First Break, 40,
no. 2, 51–55, https://doi.org/10.3997/1365-2397.fb2022012.

Special Section: Digitalization in energy July 2023 The Leading Edge 465

