
Expanding domain methods in GPU based TTI reverse time migration
Sang Suh* and Bin Wang

Summary

Three expanding domain methods are studied which

include: (1) constant velocity layer, (2) eikonal equation

solver and (3) amplitude comparison. The layer method

requires the least traveltime computing overhead but has a

loose domain size. The eikonal equation solver method

gives a relatively compact domain size but requires

relatively expensive traveltime computation. The amplitude

comparison method is accurate and less expensive. The

expanding domain method is used for efficient finite-

difference Reverse Time Migration (RTM).

A Graphics Processing Unit (GPU) kernel of cross-

derivative computation is introduced. The algorithm

attempts to minimize the global memory access count and

is thought to be highly efficient because it minimizes global

memory access and uses fast shared memory buffers as in

the previously known GPU-based Laplacian kernel found

in isotropic RTM. The new kernel is used in GPU-based

Tilted Transverse Isotropic (TTI) RTM which implements

a nested multi-thread technique efficiently utilizing CPU

and GPU resources in parallel. The program is tested on

Gulf of Mexico (GOM) field data to give a migrated image.

Introduction

RTM propagates wavefields in time through the use of the

two-way wave equation (Baysal et al., 1984; Whitmore,

1983). It correctly handles both multi-arrivals and phase

changes. Its main advantage over the one-way equation

technique is that it has no dip limitation. Thus RTM

enables imaging of a very complex subsurface. Two-way

migration methods require significantly greater

computational resources than one-way migration methods.

Robert et al. (2010) discussed various important issues on

the efficient implementation of RTM. To reduce the

wavefield modeling costs, they introduced four methods:

(1) following the wavefield, (2) domain decomposition and

resampling, (3) property compression and (4) cache-

oblivious approaches.

We found that the first of the above four methods,

following the wavefield, is very important and discuss it

further in this paper.

Micikevicius (2009) introduced a 3D finite difference GPU

kernel for isotropic RTM. His method computes a 3D

wavefield Laplacian using a 2D horizontal stencil marching

in the vertical direction. This turned out to be the most

effective method of reducing the memory access

redundancy. Extending his idea to TTI RTM, we introduce

a GPU kernel algorithm for 3D cross-derivative

computation.

Expanding Domain Methods

In the early stage of modeling, most of the wavefield is

zero except near the source point. The method of

"following the wavefield" involves skipping the wavefield

computation where the wavefield is known to be zero,

thereby reducing the computation cost.

To actually implement this idea, we must compute the non-

zero wavefield area (i.e. the traveltime). The traveltime

computation must be fast but accurate. The wavefield

domain is expanded preceding the wavefront.

We discuss three methods of expanding the wavefield

domain: (1) constant velocity layer, (2) eikonal equation

solver and (3) amplitude comparison.

In the constant velocity layer method, the traveltime is

computed from a simplified constant velocity layer model.

For traveltimes along the z-axis, a horizontal layer model is

constructed from the 3D velocity model, v(x,y,z), to 1D

velocity, V(z), where V(z) is the maximum velocity for

each depth. This procedure can be repeated for the x- and

y-axis, producing traveltimes in the horizontal direction.

Figure 1. The 2004 BP synthetic velocity model.

© 2011 SEG
SEG San Antonio 2011 Annual Meeting 34603460

Downloaded 03 Oct 2011 to 192.160.56.249. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

Expanding Domain Methods in GPU RTM

Figure 1 shows a part of the 2004 BP synthetic model

(Billette et al., 2005). The left column in Figure 2 shows a

series of expanding domain boundaries and snapshots

computed by the constant velocity layer method. The

traveltimes vary from 0.5 s to 3.0 s with an increment of

0.5 s from top to bottom. The figure shows too large of a

domain boundary especially in the horizontal direction. We

need more accurate traveltimes.

Figure 2. Expanding domain by constant velocity.

The eikonal equation solver is the classical method of

computing traveltime (Vidale, 1990). Recently, Fomel

(2010) published source code for the eikonal equation

solver. There are two programs, sfeikonal and sfeikonalvti.

Figure 2. The left column shows expanding domain by the

constant velocity method, and the right column shows

expanding domain by the eikonal solver method.

The eikonal equation solver is the classical method of

computing traveltimes (Vidale, 1990). Recently, Fomel

(2010) published source code for eikonal equation solver.

There are two programs, sfeikonal and sfeikonalvti. The

first is for isotropic media, and the second is for vertical

transverse isotropic (VTI) media. The programs use the fast

marching method (Sethian et al., 1999) exploiting the

priority queue to sort the wavefront traveltimes efficiently.

For TTI media, we simply use the isotropic eikonal solver

replacing the velocity along the symmetry plane.

The right column in Figure 2 shows a series of expanding

domain boundaries and snapshots computed by the eikonal

equation solver method. The traveltimes vary from 0.5 s to

3.0 s with an increment of 0.5 s from top to bottom. The

domain boundary of this figure is more compact than the

previous one. Figure 3 shows the source field traveltimes

with a Contour Interval (CI) of 0.5 s. The problem with this

method is that traveltime computation consumes a

significant amount of CPU time, especially in 3D, large-

aperture applications.

Figure 3. Traveltimes by eikonal solver (CI = 0.5 s).

In contrast to the previous two methods, which compute

traveltimes before wavefield modeling, the amplitude

comparison method does not pre-compute traveltimes.

Instead, the domain boundary of the next time-step is

computed based on the current wavefield for each time-

step. For this, the amplitude in front of the wavefront is

compared to the maximum wavefield amplitude. If the ratio

exceeds certain limits, the domain is expanded; otherwise,

the domain size does not change.

In the actual implementation, we do not examine

amplitudes of domain boundaries directly. Instead we

examine a few grid points, i.e. four, inside of each domain

boundary. If any of the amplitude exceeds certain limit, the

domain boundary is expanded by one grid point. We use

1/1024 of the maximum amplitude as the limit. This

method produced an almost identical expanding domain

boundary as in the eikonal equation solver method with

very little computing overhead.

The three expanding domain methods are tested for 3D TTI

RTM of a 16x16x16 km aperture shot. The elapsed times

normalized by the times of the non-expanding method are

0.78 s, 0.82 s, and 0.75 s, respectively. This shows that the

amplitude comparison method is the most efficient, while

the eikonal solver method is inefficient especially on large

aperture migrations because of its very large computing

overhead.

GPU Kernel for TTI RTM

© 2011 SEG
SEG San Antonio 2011 Annual Meeting 34613461

Downloaded 03 Oct 2011 to 192.160.56.249. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

Expanding Domain Methods in GPU RTM

The recent development in Graphics Processing Units

(GPU) technologies with unified architecture and general

purpose languages coupled with the high and rapidly

increasing performance throughput of these computers have

made General Purpose Graphics Processing Units

(GPGPU) an attractive solution to speed up diverse

applications (Abdelkhalek et al., 2009).

Micikevicius (2009) introduced a 3D finite difference GPU

kernel for reverse time migration. His method computes 3D

wavefield Laplacian using a 2D horizontal stencil marching

in vertical direction. This turned out to be the most

effective method of reducing the memory access

redundancy. The 8th order stencil-only prototype

implementation gives more than 4,000 MPoints/s of finite

difference performance on a C1060 GPU device.

Besides the wavefield Laplacian, wavefield modeling in

TTI media requires computation of wavefield cross-

derivatives such as:

 ,/2 yxP  ,/2 zxP  zyP  /2

(Fletcher et al., 2009; Yoon et al., 2010). We discuss an

algorithm that computes the cross-derivatives using GPU.

Our method extends Micikevicius' algorithm so that the

number of global memory accesses can be minimized with

the help of faster shared memory buffers.

Figure 4. A 16x16 data plus 2x2 halo tile.

Let us suppose the number of threads in the x- and y-

direction in a thread block is BDIMX by BDIMY. We

allocate two shared memory arrays, s_pp and s_px as

follow:

 __shared__ float s_pp[BDIMY_RR][BDIMX_RR];

 __shared__ float s_px[BDIMY_RR][BDIMX];

where BDIMX_RR = BDIMX + 2*R, and BDIMY_RR =

BDIMY + 2*R, with R being the arm length of the first

derivative operator. The arm length, R, of order N centered

finite-difference first derivative is N/2, because N/2

adjacent values are used in the left and right directions,

respectively.

For a given output depth Z, s_pp[][] holds input data of a

2D horizontal tile of depth Z, where Z=z+R. Figure 4

shows a 16x16 horizontal tile and 2x2 halos of the cross-

derivative scheme. This assumes BDIMX=16, BDIMY=16,

and R=2. The blue colored 16x16 points are the main input

area. Each thread reads one value from the global memory

and writes to the tile. The surrounding brown colored two-

point wide area is the halo. Because the number of points

and number of threads do not match, only a subset of the

threads transfers data from global memory to this halo. For

efficient computation, the size ratio between the halo and

main area must be minimized as long as the GPU resource

permits.

Also, we allocate three thread local arrays, local_px[DIA],

local_py[DIA], and local_pxy[R] where DIA = R+R+1.

These arrays store x-derivative, y-derivative and xy-

derivatives, respectively, of a sliding window in the z-

direction. After loading the data of depth Z, we compute

local_px[Z], local_py[Z] using the 2R-th order centered

finite difference method.

The second shared memory buffer, s_px[][], is shown as

purple dots in Figure 4. The buffer stores x-derivatives of

size BDIMY_RR by BDIMX at depth Z. The main area

values are already computed and are copied from the thread

local array, local_px[Z]. The halo area values are computed

by a subset of the threads from the first shared memory

buffer using 2R-th order centered finite-difference.

Synchronizing all threads in a block, each thread can share

s_px[][] from adjacent threads to compute its y-derivative.

This is xy-derivative at depth Z, which we store at

local_pxy[Z].

The final three derivatives, pxy[z], pyz[z], pxz[z] are

computed as follow:

 (1) pxy[z] is read from the local_pxy[] array.

 (2) pyz[z] is computed by z-derivative of local_py[]

 (3) pxz[z] is computed by z-derivative of local_px[]

© 2011 SEG
SEG San Antonio 2011 Annual Meeting 34623462

Downloaded 03 Oct 2011 to 192.160.56.249. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

Expanding Domain Methods in GPU RTM

Other aspects of GPU implementation of TTI RTM

A GPU based TTI reverse time migration program is

written. The program uses GPU for compute intensive

wavefield modeling while the CPU takes care of snapshot

i/o to and from disk and imaging. To maximize the

snapshot i/o performance, the wavefield is compressed

using three stages: (1) dynamic range reduction, (2)

quantization and (3) Hauffman coding. The compression

algorithm is designed to minimize the CPU time and not to

exceed the GPU wavefield modeling time.

The fully parallel, nested multithread implementation of the

compression is so successful that snapshot i/o and imaging

times are completely hidden by the GPU wavefield

modeling time in a typical TTI reverse time migration.

Application of GPU RTM

In complex geological areas such as the GOM, TTI RTM

has been routinely used for velocity model building. In a

typical GOM imaging project, multiple iterations of TTI

RTM imaging are required for velocity modeling. To

reduce the turnaround time, we need to dramatically

improve the RTM efficiency. We have successfully

deployed GPU racks in our processing center, and the GPU

RTM program has been actively used in RTM production.

Figure 5 is an example of our GPU RTM image from one

of our WAZ surveys in GOM. GPU RTM has not only

dramatically reduced iteration turnaround time, but also

produced a high quality RTM image.

Figure 5. GPU RTM image of a WAZ data set from GOM.

Conclusions

The expanding domain method reduces the total number of

operations required for wavefield modeling. We studied

three expanding domain methods: (1) constant velocity

layer method, (2) eikonal equation solver method and (3)

amplitude comparison method. The layer method requires

almost no computing overhead in traveltime computation.

However, its domain size is too loose compared to the other

method. The eikonal equation solver method gives a

relatively compact domain size. However, the traveltime

computation overhead is too large especially in a large

aperture 3D application. The amplitude comparison method

gives an almost identical domain size as in the eikonal

equation solver method with very little overhead. The

expanding domain method can be used for efficient finite-

difference RTM.

A GPU kernel of cross-derivative computation is

introduced. The algorithm attempts to minimize the global

memory access count and is thought to be highly efficient

because it minimizes global memory access and uses fast

shared memory buffers as in the previously known GPU-

based Laplacian kernel found in isotropic RTM.

The new kernel is used in the GPU-based TTI RTM

program, which is a nested multithread program efficiently

utilizing CPU and GPU resources. The program is actively

used in RTM production.

Acknowledgements

The authors thank Paulius Micikevicius of NVIDIA for

sharing his CUDA implementation of the high-order finite

difference code. We thank BP for providing access to their

synthetic model data. We would like to thank the following

TGS colleagues for their contributions and support: Xinyi

Sun, Alex Yeh, Kwangjin Yoon, James Cai, Xuening Ma,

Gary Rodriguez and Zhiming Li. We also thank Laurie

Geiger, Simon Baldock and Chuck Mason for reviewing

and proof-reading this paper. Final thanks go to TGS

management for the permission of publishing this paper.

© 2011 SEG
SEG San Antonio 2011 Annual Meeting 34633463

Downloaded 03 Oct 2011 to 192.160.56.249. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

EDITED REFERENCES

Note: This reference list is a copy-edited version of the reference list submitted by the author. Reference lists for the 2011

SEG Technical Program Expanded Abstracts have been copy edited so that references provided with the online metadata for

each paper will achieve a high degree of linking to cited sources that appear on the Web.

REFERENCES

Abdelkhalek, R., H. Canandra, O. Coulaud, G. Latu, and J. Roman, 2009, Fast seismic modeling and

reverse time migration on a GPU cluster: 2009 High Performance Computing Symposium,

Proceedings, http://hal.inria.fr/docs/00/40/39/33/PDF/hpcs.pdf, accessed 2 June, 2011.

Billette, F., and S. Brandsberg-Dahl, 2005, The 2004 BP velocity benchmark: 67th Conference and

Exhibition, EAGE, Extended Abstracts, B035.

Clapp, R. G., H. Fu, and O. Lindtjorn, 2010, Selecting the right hardware for reverse time migration: The

Leading Edge, 29, 48–58, doi:10.1190/1.3284053.

Fletcher, R. P., X. Du, and P. J. Fowler, 2009, Reverse time migration in tilted transversely isotropic

(TTI) media: Geophysics, 74, no. 6, WCA179–WCA187.

Foltinek, D., D. Eaton, J. Mahovsky, P. Moghaddam, and R. McGarry, 2009, Industrial-scale reverse time

migration on GPU hardware: 79th Annual International Meeting, SEG, Expanded Abstracts, 2789–

2793.

Fomel, S., 2010, Fast marching eikonal solver (3-D): http://www.reproducibility.org/RSF/sfeikonal.html,

accessed 2 June 2011.

Micikevicius, P., 2009, 3D finite difference computation on GPUs using CUDA: GPGPU-2: Proceedings

of 2nd workshop on general purpose processing on graphics processing units, 79–84.

Sethian, J. A., and A. M. Popovici, 1999, 3-D traveltime computation using the fast marching method:

Geophysics, 64, 516–523.

Sun, X., and S. Suh, 2011, Maximizing throughput for high productive RTM: From CPU-RTM to GPU-

RTM: 81st Annual International Meeting, SEG, Expanded Abstracts, in press.

Vidale, J. E., 1990, Finite-difference calculation of traveltimes in three dimensions: Geophysics, 55, 521–

526.

Yoon, K., S. Suh, J. Ji, J. Cai, and B. Wang, 2010, Stability and speedup issues in TTI RTM

implementation: 80th Annual International Meeting, SEG, Expanded Abstracts, 3221–3224

© 2011 SEG
SEG San Antonio 2011 Annual Meeting 34643464

Downloaded 03 Oct 2011 to 192.160.56.249. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

http://hal.inria.fr/docs/00/40/39/33/PDF/hpcs.pdf
http://dx.doi.org/10.1190/1.3284053
http://www.reproducibility.org/RSF/sfeikonal.html

