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Summary 

 

Three expanding domain methods are studied which 

include: (1) constant velocity layer, (2) eikonal equation 

solver and (3) amplitude comparison. The layer method 

requires the least traveltime computing overhead but has a 

loose domain size. The eikonal equation solver method 

gives a relatively compact domain size but requires 

relatively expensive traveltime computation. The amplitude 

comparison method is accurate and less expensive. The 

expanding domain method is used for efficient finite-

difference Reverse Time Migration (RTM). 

 

A Graphics Processing Unit (GPU) kernel of cross-

derivative computation is introduced. The algorithm 

attempts to minimize the global memory access count and 

is thought to be highly efficient because it minimizes global 

memory access and uses fast shared memory buffers as in 

the previously known GPU-based Laplacian kernel found 

in isotropic RTM. The new kernel is used in GPU-based 

Tilted Transverse Isotropic (TTI) RTM which implements 

a nested multi-thread technique efficiently utilizing CPU 

and GPU resources in parallel. The program is tested on 

Gulf of Mexico (GOM) field data to give a migrated image. 

 

Introduction 

 

RTM propagates wavefields in time through the use of the 

two-way wave equation (Baysal et al., 1984; Whitmore, 

1983). It correctly handles both multi-arrivals and phase 

changes. Its main advantage over the one-way equation 

technique is that it has no dip limitation. Thus RTM 

enables imaging of a very complex subsurface.  Two-way 

migration methods require significantly greater 

computational resources than one-way migration methods. 

 

Robert et al. (2010) discussed various important issues on 

the efficient implementation of RTM. To reduce the 

wavefield modeling costs, they introduced four methods: 

(1) following the wavefield, (2) domain decomposition and 

resampling, (3) property compression and (4) cache-

oblivious approaches. 

 

We found that the first of the above four methods, 

following the wavefield, is very important and discuss it 

further in this paper. 

 

Micikevicius (2009) introduced a 3D finite difference GPU 

kernel for isotropic RTM. His method computes a 3D 

wavefield Laplacian using a 2D horizontal stencil marching 

in the vertical direction. This turned out to be the most 

effective method of reducing the memory access 

redundancy. Extending his idea to TTI RTM, we introduce 

a GPU kernel algorithm for 3D cross-derivative 

computation. 

 

Expanding Domain Methods 

 

In the early stage of modeling, most of the wavefield is 

zero except near the source point. The method of 

"following the wavefield" involves skipping the wavefield 

computation where the wavefield is known to be zero, 

thereby reducing the computation cost. 

 

To actually implement this idea, we must compute the non-

zero wavefield area (i.e. the traveltime). The traveltime 

computation must be fast but accurate. The wavefield 

domain is expanded preceding the wavefront. 

 

We discuss three methods of expanding the wavefield 

domain: (1) constant velocity layer, (2) eikonal equation 

solver and (3) amplitude comparison.  

 

In the constant velocity layer method, the traveltime is 

computed from a simplified constant velocity layer model. 

For traveltimes along the z-axis, a horizontal layer model is 

constructed from the 3D velocity model, v(x,y,z), to 1D 

velocity, V(z), where V(z) is the maximum velocity for 

each depth. This procedure can be repeated for the x- and 

y-axis, producing traveltimes in the horizontal direction.  

 

 
 

Figure 1. The 2004 BP synthetic velocity model. 
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Expanding Domain Methods in GPU RTM 

Figure 1 shows a part of the 2004 BP synthetic model 

(Billette et al., 2005). The left column in Figure 2 shows a 

series of expanding domain boundaries and snapshots 

computed by the constant velocity layer method. The 

traveltimes vary from 0.5 s to 3.0 s with an increment of 

0.5 s from top to bottom. The figure shows too large of a 

domain boundary especially in the horizontal direction. We 

need more accurate traveltimes. 

 

 

 

Figure 2. Expanding domain  by constant velocity. 

 

 

The eikonal equation solver is the classical method of 

computing traveltime (Vidale, 1990). Recently, Fomel 

(2010) published source code for the eikonal equation 

solver. There are two programs, sfeikonal and sfeikonalvti.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The left column shows expanding domain by the 

constant velocity method, and the right column shows 

expanding domain by the eikonal solver method. 

 

The eikonal equation solver is the classical method of 

computing traveltimes (Vidale, 1990). Recently, Fomel 

(2010) published source code for eikonal equation solver.  

There are two programs, sfeikonal and sfeikonalvti. The 

first is for isotropic media, and the second is for vertical 

transverse isotropic (VTI) media. The programs use the fast 

marching method (Sethian et al., 1999) exploiting the 

priority queue to sort the wavefront traveltimes efficiently. 

For TTI media, we simply use the isotropic eikonal solver 

replacing the velocity along the symmetry plane. 

 

The right column in Figure 2 shows a series of expanding 

domain boundaries and snapshots computed by the eikonal 

equation solver method. The traveltimes vary from 0.5 s to 

3.0 s with an increment of 0.5 s from top to bottom. The 

domain boundary of this figure is more compact than the 

previous one. Figure 3 shows the source field traveltimes 

with a Contour Interval (CI) of 0.5 s. The problem with this 

method is that traveltime computation consumes a 

significant amount of CPU time, especially in 3D, large-

aperture applications. 

 

 
 

Figure 3. Traveltimes by eikonal solver (CI = 0.5 s). 

 

In contrast to the previous two methods, which compute 

traveltimes before wavefield modeling,  the amplitude 

comparison method does not pre-compute traveltimes. 

Instead, the domain boundary of the next time-step is 

computed based on the current wavefield for each time-

step. For this, the amplitude in front of the wavefront is 

compared to the maximum wavefield amplitude. If the ratio 

exceeds certain limits, the domain is expanded; otherwise, 

the domain size does not change. 

 

In the actual implementation, we do not examine 

amplitudes of domain boundaries directly. Instead we 

examine a few grid points, i.e. four, inside of each domain 

boundary. If any of the amplitude exceeds certain limit, the 

domain boundary is expanded by one grid point. We use 

1/1024 of the maximum amplitude as the limit. This 

method produced an almost identical expanding domain 

boundary as in the eikonal equation solver method with 

very little computing overhead. 

 

The three expanding domain methods are tested for 3D TTI 

RTM of a 16x16x16 km aperture shot. The elapsed times 

normalized by the times of the non-expanding method are 

0.78 s, 0.82 s, and 0.75 s, respectively. This shows that the 

amplitude comparison method is the most efficient, while 

the eikonal solver method is inefficient especially on large 

aperture migrations because of its very large computing 

overhead. 

 

 

GPU Kernel for TTI RTM 
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Expanding Domain Methods in GPU RTM 

The recent development in Graphics Processing Units 

(GPU) technologies with unified architecture and general 

purpose languages coupled with the high and rapidly 

increasing performance throughput of these computers have 

made General Purpose Graphics Processing Units 

(GPGPU) an attractive solution to speed up diverse 

applications (Abdelkhalek et al., 2009). 

 

Micikevicius (2009) introduced a 3D finite difference GPU 

kernel for reverse time migration. His method computes 3D 

wavefield Laplacian using a 2D horizontal stencil marching 

in vertical direction. This turned out to be the most 

effective method of reducing the memory access 

redundancy. The 8th order stencil-only prototype 

implementation gives more than 4,000 MPoints/s of finite 

difference performance on a C1060 GPU device. 

 

Besides the wavefield Laplacian, wavefield modeling in 

TTI media requires computation of wavefield cross-

derivatives such as: 

 

 ,/2 yxP   ,/2 zxP   zyP  /2
 

 

(Fletcher et al., 2009; Yoon et al., 2010). We discuss an 

algorithm that computes the cross-derivatives using GPU. 

Our method extends Micikevicius' algorithm so that the 

number of global memory accesses can be minimized with 

the help of faster shared memory buffers. 

 

 
 

Figure 4. A 16x16 data plus 2x2 halo tile. 

 

 

Let us suppose the number of threads in the x- and y-

direction in a thread block is BDIMX by BDIMY. We 

allocate two shared memory arrays, s_pp and s_px as 

follow: 

 

    __shared__ float s_pp[BDIMY_RR][BDIMX_RR]; 

    __shared__ float s_px[BDIMY_RR][BDIMX]; 

 
where BDIMX_RR = BDIMX + 2*R, and BDIMY_RR = 

BDIMY + 2*R, with R being the arm length of the first 

derivative operator. The arm length, R, of order N centered 

finite-difference first derivative is N/2, because N/2 

adjacent values are used in the left and right directions, 

respectively. 

 

For a given output depth Z, s_pp[][] holds input data of a 

2D horizontal tile of depth Z, where Z=z+R. Figure 4 

shows a 16x16 horizontal tile and 2x2 halos of the cross-

derivative scheme. This assumes BDIMX=16, BDIMY=16, 

and R=2. The blue colored 16x16 points are the main input 

area. Each thread reads one value from the global memory 

and writes to the tile. The surrounding brown colored two-

point wide area is the halo. Because the number of points 

and number of threads do not match, only a subset of the 

threads transfers data from global memory to this halo. For 

efficient computation, the size ratio between the halo and 

main area must be minimized as long as the GPU resource 

permits. 

 

Also, we allocate three thread local arrays, local_px[DIA], 

local_py[DIA], and local_pxy[R] where DIA = R+R+1. 

These arrays store x-derivative, y-derivative and xy-

derivatives, respectively, of a sliding window in the z-

direction. After loading the data of depth Z, we compute 

local_px[Z], local_py[Z] using the 2R-th order centered 

finite difference method. 

 

The second shared memory buffer, s_px[][], is shown as 

purple dots in Figure 4. The buffer stores x-derivatives of 

size BDIMY_RR by BDIMX at depth Z. The main area 

values are already computed and are copied from the thread 

local array, local_px[Z]. The halo area values are computed 

by a subset of the threads from the first shared memory 

buffer using 2R-th order centered finite-difference. 

Synchronizing all threads in a block, each thread can share 

s_px[][] from adjacent threads to compute its y-derivative. 

This is xy-derivative at depth Z, which we store at 

local_pxy[Z]. 

 

The final three derivatives, pxy[z], pyz[z], pxz[z] are 

computed as follow: 

 

    (1) pxy[z] is read from the local_pxy[] array. 

    (2) pyz[z] is computed by z-derivative of local_py[] 

    (3) pxz[z] is computed by z-derivative of local_px[] 
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Expanding Domain Methods in GPU RTM 

Other aspects of GPU implementation of TTI RTM 

 

A GPU based TTI reverse time migration program is 

written. The program uses GPU for compute intensive 

wavefield modeling while the CPU takes care of snapshot 

i/o to and from disk and imaging. To maximize the 

snapshot i/o performance, the wavefield is compressed 

using three stages: (1) dynamic range reduction, (2) 

quantization and (3) Hauffman coding. The compression 

algorithm is designed to minimize the CPU time and not to 

exceed the GPU wavefield modeling time. 

 

The fully parallel, nested multithread implementation of the 

compression is so successful that snapshot i/o and imaging 

times are completely hidden by the GPU wavefield 

modeling time in a typical TTI reverse time migration. 

 

 

Application of GPU RTM 

 

 

In complex geological areas such as the GOM, TTI RTM 

has been routinely used for velocity model building. In a 

typical GOM imaging project, multiple iterations of TTI 

RTM imaging are required for velocity modeling. To 

reduce the turnaround time, we need to dramatically 

improve the RTM efficiency. We have successfully 

deployed GPU racks in our processing center, and the GPU 

RTM program has been actively used in RTM production. 

Figure 5 is an example of our GPU RTM image from one 

of our WAZ surveys in GOM. GPU RTM has not only 

dramatically reduced iteration turnaround time, but also 

produced a high quality RTM image. 

 

 

 
 

Figure 5. GPU RTM image of a WAZ data set from GOM. 

 

Conclusions 

 

The expanding domain method reduces the total number of 

operations required for wavefield modeling. We studied 

three expanding domain methods: (1) constant velocity 

layer method, (2) eikonal equation solver method and (3) 

amplitude comparison method. The layer method requires 

almost no computing overhead in traveltime computation. 

However, its domain size is too loose compared to the other 

method. The eikonal equation solver method gives a 

relatively compact domain size. However, the traveltime 

computation overhead is too large especially in a large 

aperture 3D application. The amplitude comparison method 

gives an almost identical domain size as in the eikonal 

equation solver method with very little overhead. The 

expanding domain method can be used for efficient finite-

difference RTM. 

 

A GPU kernel of cross-derivative computation is 

introduced. The algorithm attempts to minimize the global 

memory access count and is thought to be highly efficient 

because it minimizes global memory access and uses fast 

shared memory buffers as in the previously known GPU-

based Laplacian kernel found in isotropic RTM. 

 

The new kernel is used in the GPU-based TTI RTM 

program, which is a nested multithread program efficiently 

utilizing CPU and GPU resources. The program is actively 

used in RTM production. 
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