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Summary 

 

A new approximate migration weight is developed for 

Kirchhoff migration of converted-wave data.  As with 

previous approximations it is based on the exact weight for 

a homogeneous medium.  However, rather than assuming 

equality of travel path distances from source to image point 

and image point to receiver, it assumes that the total 

traveltime is partitioned in a way that is consistent with 

common-conversion point reflection.  It is shown that, 

through solution of a cubic equation, this results in an 

efficient approach with no evaluations within the inner 

migration loop.  Application of this new migration weight 

in prestack time migration of typical multicomponent land 

data shows that it yields migrated stacks and gathers very 

similar to those obtained using the exact homogeneous 

migration weight, and superior to those obtained using 

migration weights borrowed from P-wave migration theory, 

particularly in the near-surface region.   

 

Introduction 

 

Large volumes of multicomponent data have been and 

continue to be acquired.  Extracting information from these 

data is desirable, but reality dictates that the geophysical 

community learns to use them one step at a time, as has 

been the pattern with compressional-wave data over many 

decades.  Through consistent effort, the value of 

multicomponent data sets has gradually become more 

evident, and at present the converted-wave prestack time 

migration of reasonably flat geology is a standard 

deliverable from a number of vendors.  Even so, 

improvements are still possible, as described in the present 

study. 

 

Essential to the proper treatment of amplitudes in migration 

is incorporation of proper migration weights; however 

these can be expensive to apply, requiring evaluation inside 

the inner loops of Kirchhoff migration.  For P-waves an 

approximate method which balances efficiency and 

accuracy was presented by Dellinger et al. (2000) and 

Zhang et al. (2000), and this is in common use throughout 

the industry.  Miao et al. (2005) and Cary and Zhang 

(2010) presented extensions of the exact migration weight 

for PS data; Miao et al. (2005) also sought to develop an 

efficient and accurate approximation similar to that used in 

the P-wave case.  Their analysis did not examine the issue 

in detail however, and a more satisfying and optimal 

approximation is desired. 

 

In this work we review the strategy of migration weight 

approximation and present in detail a new approximation 

for converted-wave migration weights which achieves the 

same degree of accuracy as current approximations in use 

for P-wave migration.  Single-trace responses as well as 

migrations to stacks and gathers are used to illustrate the 

value of this new method. 

 

Theory of approximate PS migration weights 

 

Review of PP case: Zhang et al. (2000) state that in a 

constant-velocity medium, the weight for a 3D common-

offset prestack Kirchhoff migration of PP data is 

 

, 

(1) 

where ts is the traveltime from source to image point, tr is 

the time from image point to receiver, z the vertical 

distance to the image point, and v the velocity of the 

homogeneous medium. This expression must be evaluated 

in the inner migration loop in order to have access to the 

values of tr and ts, so it is time-consuming. 

  

Following Dellinger (2000), Zhang et al. (2000) 

approximated tr = ts = t / 2 (where t = ts + tr is the total 

traveltime), which is exactly true for either zero-dip or for 

zero-offset configurations. This assumes that the weight 

can be approximated by the value it would have if it were a 

CMP reflection or if the source and receiver are at the 

equivalent offset position (Bancroft & Geiger, 1994). The 

weight above in equation 1 then simplifies to 

 
, 

(2) 

where t0 is the two-way vertical traveltime. The first 

quantity in equation 2 pertains to depth migration and the 

last to time migration.  The 1/t factor of the approximation 

can be applied to the input before the migration loops and 

the z or t0 factor can be applied to the image after the 

migration loops, so the additional time required for 

weighting is now negligible.  

 

This is a good approximation for geologies which are 

largely horizontal as the CMP configuration makes the 

dominant contribution to the image, and in this 

approximation the CMP configuration is weighted 

correctly.  Zheng et al. (2000) found it to give reasonable 

amplitude behavior in depth imaging applications. 

 

PS case: An exact, constant-velocity weight for PS 

migration, analogous to equation 1, is 
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Converted-wave migration weight 
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Here vc
2 = vp vs, where vp and vs are the P-wave and S-wave 

velocities of the medium,  = vp / vs, and s and r are the 

angles of the P-wave and S-wave travelpaths with respect 

to vertical. We found the expression of Miao et al. (2005) 

to be more accurate than that of Cary & Zhang (2010) and 

obtained equation 3 from the expression for the horizontal 

layering case in Miao et al. (2005), simplifying it for the 

case of a homogeneous medium.  [Note that setting   = 1 

in equation 3 yields equation 1, except for a factor of 2 

missing from Zhang et al. (2000).] Like equation 1, the 

expression in equation 3 must be evaluated in the inner 

migration loop; however it is more complicated than the PP 

expression, so that it would be even more time-consuming 

to apply. 

 

Miao et al. (2005) suggest that equation 3 could be 

approximated following the same practice as in the PP case.  

Presumably they refer to the fact that, for instance, in the 

CMP geometry (s = r) we have tr / ts =  which simplifies 

equation 3 to equation 2 with 8/v2 replaced by the constant 

factor   2
2

//1 cv  .  We refer to this as the midpoint 

weight approximation (MPWA).  However the CMP 

geometry does not make the principal contribution to the 

image in PS migration, so the MPWA is not an ideal 

approximation for the PS case.  For a largely horizontal 

geology the principal contribution to the image comes from 

CCP (common conversion point) reflections.  The purpose 

of this abstract is to present details of a migration weight 

approximation which is as accurate for PS data as equation 

2 is for PP data. 

 

The general strategy of the approximation, which we refer 

to as the CPWA (conversion point weight approximation), 

is very simple; it is to set tr and ts to values which sum to 

the original total traveltime t, but which correspond to a 

CCP reflection. This requires solving a cubic equation, as 

described next, but this can be done outside the inner loop 

and is thus not a burden in terms of computing time. 

 

Derivation of the approximate converted-wave migration 

weight: Beginning from the exact weight for a 

homogeneous medium (equation 3) let us express it in 

terms of raypath distances, rs and rr, rather than traveltimes, 

using the relations ts = rs / vp and tr = rr / vs.  This yields 
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(4) 

We can further represent this in terms of the ratio r ≡ rr /rs 

and the product p ≡ rs rr giving us 
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(5) 

The MPWA can be obtained from this exact PS weight by 

setting r = 1 and p = t 2 vc
2  / (1+)2, consistent with a CMP 

reflection geometry.  To obtain the more accurate CPWA 

we must find r and p for a CCP configuration.  For given 

values of t, , vc, and offset h, we require three relations:  

1)  22222 zhrhr rrss   from which we obtain  

 phhhrr s /)2(/1  , (6) 

where hs, hr are lateral distances from source and receiver 

to CCP location, so that h = hs + hr. 

2) Snell’s law, (sins)/vp = (sinr)/vs, from which we obtain 

 )./(/   rhhs
 (7) 

3) t = ts + tr from which we obtain 

   rrpvt c /12/)( 2  . (8) 

We use equations 7 and 8 to eliminate hs and p from 

equation 6 which yields a cubic equation in r: 

        01/122 2222223   rrr , (9) 

where  ≡ t vc /h is a dimensionless time.  We can solve 

equation 9 for r, then substitute into equation 8 to obtain p.  

These values (r and p) can then be used in equation 5 to 

calculate the CPWA.  Note from the cosine law for a CCP 

configuration we find cos (s + r ) = (r + 1/r – h2 / p) / 2. 

 

Because p and r for a CCP configuration depend on t but 

not on z or t0, only the z or t0 factor in equation 5 needs to 

be applied to the image after migration, and everything else 

can be applied to the input prior to migration.  Nothing 

needs to be applied inside the migration loops. 

 

Equation 9 is reminiscent of the cubic equation obtained by 

Schneider (2002). His equation yields the conversion point, 

which also could be used as a starting point to calculate r 

and p.  This would be less direct than using equations 8 and 

9, but would still yield r and p values for use in equation 5. 

 

The above is for the 3D case.  The analogue of equation 5 

for the 2.5D case is 
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(10) 

r and p for this expression can be obtained following the 

same method as for the 3D case. 
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Converted-wave migration weight 

 

Examples of prestack time migration with approximate 

and exact weights 

 

In this section we demonstrate the effect of choosing either 

the MPWA or CPWA in converted-wave prestack time 

migration.  We illustrate this with i) single-trace responses, 

ii) migrated stacks, and iii) migrated gathers. 

 

All examples are from the Firestone 3C/2D dataset.  These 

data were collected in February 2013 from both Vibroseis 

and dynamite sources with 110 ft (35.5 m) source interval 

and 55 ft (16.76 m) receiver interval.  

 

Single-trace responses.  Figure 1a illustrates migration of a 

single trace using the exact homogeneous weight of 

equation 3. Figure 1b shows the difference between Figure 

1a and the analogous result obtained using the MPWA 

weight (which is of a similar form to the PP weight in 

equation 2).  As expected, for all times they are equal at the 

midpoint of the trace.  However, in Figure 1c, the 

difference between Figure 1a and the CPWA result shows 

that the position at which they are equal varies with time, 

tracing out the locus of CCPs.  These results suggest that 

for the final migration products the CPWA will have its 

greatest advantage over the MPWA in the near surface. 

 

Migrated stacks.  Figure 2 shows near-surface detail of the 

migrated stacks.  As anticipated from the single-trace 

responses, the CPWA result is superior to the MPWA result 

in this region.  At later times the results are more similar. 

 

Migrated gathers.  Figure 3 shows near-surface detail of a 

single migrated gather.  Both the MPWA and CPWA are 

most accurate at short offsets, but the CPWA would 

provide better input than the MPWA for a postmigration 

AVO analysis.  At later times the three results become 

more similar.   

 

Conclusions 

 

A new approximate migration weight has been obtained for 

prestack Kirchhoff migration of converted wave data.  It is 

expected that this weight provides an optimal balance of 

accuracy and efficiency for current processing standards.  It 

provides results very similar to the exact homogeneous 

weight for reasonably horizontal geologies, but requires no 

additional evaluation within the inner migration loop. 

 

Acknowledgements 

 

The authors thank TGS for permission to use the Firestone 

3C/2D data. 

      a)                           b)  
                                                                                  S           MA       R 

        c)   

Figure 1. Single-trace responses.  a) The “exact” response, using the 

exact homogeneous weight in equation 3.  b) The difference of the 
exact response and the MPWA response. c) The difference of the 

exact response and the CPWA response.  The amplitudes in b) and c) 

have been significantly increased in order to emphasize the location 
of zero differences. 

 

Between b) and c) we have indicated the approximate lateral location 
of the source (S), midpoint (M), asymptotic conversion point bin (A), 

and receiver (R), as given from the geometry of the input trace.  

From this we see that the exact and MPWA results are identical 
(difference=0) at the midpoint, while the exact and CPWA results are 

identical at CCP locations. 
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Converted-wave migration weight 

 

a) Exact weight 

 

b)  CPWA weight 

 

c)  MPWA weight 

 

Figure 2: Near-surface detail of migrated stacks obtained using a) the exact homogeneous weight, b) the conversion-point weight approximation 

(CPWA), and c) the midpoint weight approximation (MPWA). The vertical time scale is from 0.0 – 0.7 s.  The red arrow at top indicates the 
location of the migrated gather displayed in Figure 3. The CPWA presented here yields a result superior to the MPWA result.  

 

 

    a) Exact weight                                           b) CPWA weight                                         c) MPWA weight 

Figure 3: Near-surface detail of migrated gathers obtained using a) the exact homogeneous weight, b) the conversion-point weight approximation 

(CPWA), and c) the midpoint weight approximation (MPWA). The location of the gather in the stack is indicated by the red arrow in Figure 2. 

The CPWA result is much more similar to the exact result than is the MPWA result.  
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