
An effective Q-compensation method for Fourier finite-difference wave-equation migration in 
tilted transversely isotropic media  
Chen Tang*, Jianming Sheng, Jian Mao, Yang He and Bin Wang, TGS Nopec Geophysical Company 
 
Summary 
 
When a seismic wave propagates in the subsurface of the 
earth, its energy can be attenuated. This has a negative 
influence on both the amplitude and the phase of an image, 
especially when a geological body with large attenuation 
coefficients presents in the target survey area. Therefore, we 
need to compensate for the attenuation effect in wave 
propagation. The attenuation effect is generally frequency-
dependent, so it is natural to incorporate the attenuation 
formula into the Fourier finite-difference wave-equation 
migration (FFD WEM) that also works in the frequency 
domain. The FFD WEM in tilted transversely isotropic (TTI) 
media involves three parts: a phase-shift, a thin-lens, and an 
FFD term. Compared to the traditional method that 
compensates the Q effect only in the thin-lens term, this 
paper involves two innovative parts: First, we incorporate a 
frequency-dependent velocity in all the three parts of the 
FFD WEM. As a result, the FFD coefficients are frequency-
dependent and a complex-valued velocity is also included in 
the FFD term. Second, to obtain a stable Q-compensated 
wavefield, we design a filter in the frequency domain by 
comparing two propagating wavefields. The method aims at 
improving the Q-compensation accuracy for the FFD WEM 
in Q-TTI media, especially at relatively large propagation 
angles. Examples show that the proposed method can 
provide high-quality images for Q-TTI media.  
 
Introduction 
 
When a seismic wave propagates in the subsurface of the 
earth, its energy is gradually absorbed. This is caused by an 
intrinsic property of the medium that is known as seismic 
attenuation. It influences both the amplitude and the travel 
time of a propagating wave, which could further result in 
weak amplitudes and shifted phases in the image. When a 
geological structure with strong attenuation presents in the 
target survey area, the image¶s quality can be significantly 
reduced if the attenuation effect is not adequately 
compensated for. The strength of attenuation for a rock can 
be described by the seismic quality factor Q,  
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where E  is the energy of a seismic wave propagating in this 
rock and EG is the energy loss during one oscillation cycle 
of this wave. As shown in equation 1, a small Q value 
corresponds to a large attenuation effect. There are several 
ways to incorporate the attenuation effect into the wave 
equation. One of them is Futterman¶s (1962) formula that 
works in the frequency domain,  
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Here, Qv and re fv are the Q-dependent and reference 

velocities, respectively. Z  and re fZ  are the frequency and 
reference frequency, respectively. In equation 2, the real part 
corresponds to the phase difference and the imaginary part 
corresponds to the amplitude difference. To compensate the 
attenuation, we need to keep the phase term to match the 
travel time and take a conjugate of the amplitude term to 
compensate the amplitude loss (e.g., Zhang et al., 2010). 
Equation 2 automatically separates the phase and amplitude 
terms, which facilitates constructing the Q-compensated 
formula,  
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where 
Q in v

v
�

 is the Q-compensated velocity. This is an 

important advantage of Futterman¶s formula over the 
generalized standard linear solid (GSLS) model (e.g., 
Carcione et al., 1988) that uses the strain and stress 
relaxation times to replace the parameter Q and does not 
separate the phase and amplitude effects.  
 
Futterman¶s formula is in the frequency domain; therefore, 
it needs an extra effort to incorporate it with the time-domain 
reverse time migration, which could significantly increase 
the computational time (e.g., Zhang et al., 2010; Zhu et al., 
2014), but it is well suited for the Fourier finite-difference 
(FFD) wave-equation migration (WEM) (Distow, 1994) that 
also works in the frequency domain. Some previous work 
about the FFD WEM in tilted transversely isotropic (TTI) 
media can be found in the work of Valenciano et al. (2009), 
Hua et al. (2010, 2013), and Tang et al. (2019). Shen et al. 
(2018) and Valenciano et al. (2011) also use Futterman¶s 
formula in their WEM approaches. The TTI FFD WEM 
involves three terms: phase-shift, thin-lens and FFD. We 
incorporate Futterman¶s formula into all three terms. 
Compared to the traditional method that involves the FFD in 
the second term only, this gives more accurate simulation of 
the attenuation at relatively large angles (e.g., above 45°). 
Because of involving 

Q in v
v

�
 (in equation 3) in the Q-

compensated wave equation with an increased dominant 
frequency and amplitudes, the implementation is not stable. 
To address this, we design a filter by comparing two 
propagating wavefields.  
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Q-TTI FFD WEM 

Theory 
 
Defining the slowness vector as ( ), ,x y zS S S=S , the TTI 

FFD WEM formula can be written as (e.g., Hua et al., 2013) 
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where zS is an estimation of zS . 0zS  is the zS  in the 

normal direction and can be theoretically calculated. pv  is 

the velocity and 0pv  is the reference velocity. ( ), , ,a b c d  
are the coefficients in the x-, y-, m- and p-directions that 
correspond to 0°, 45°, 90° and -45°, respectively. Equation 
4 can be rewritten as (Tang et al. 2019) 

        

( )
2

2 2 0

0 0

2

2

2 2
, , ,

2

1

        

1

,

z

x y

p p p

p

n n

n x y m p
p p

n n

S
i k k i

z v v v

v
c a

n i n

v v
b d

i n i n

Z
Z

Z

Z Z

=

w
= � � + � �

w

w w
+

w � w�
w w

� �
� w � w

§ · § ·
¨ ¸ ¨ ¸¨ ¸ ¨ ¸
© ¹ © ¹

§ ·
¨ ¸
© ¹

¦

                (5) 

where ( ), ,x y zk k k=k  is the wavenumber. The right side of 

equation 5 involves three components: phase-shift, thin lens 
and FFD. Incorporating equation 2 into equation 5 gives 
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Equation 6 shows that the coefficients in the FFD term are 
frequency-dependent; they are obtained at each frequency 

from a pre-calculated coefficient table that is calculated from 
the method proposed by Tang et al. (2019), which combines 
linear and nonlinear inversions to improve the accuracy of 
the coefficient estimation. The velocity in the FFD term is 
also complex-valued; if we approximate it as its modulus, 
equation 6 is simplified to the corresponding formula of 
Tang et al. (2020).  
 
Figure 1 shows a comparison between three wavefield 
snapshots that are obtained from modeling without 
attenuation in (a), with partial attenuation in (b), and with 
equation 6 in (c), respectively. The partial attenuation in 
Figure 1b denotes a traditional method that includes Qv

(calculated from equation 2) only in the thin-lens term of the 
FFD WEM propagator, which is simple and also less 
expensive than the proposed method in equation 6. The 
example uses a constant 2D Q-TTI model. The P-velocity is 
2000 m/s and Q is 20. The anisotropic parameters epsilon 
and delta are 0.25 and 0.15, respectively, and the polar angle 
theta is 30°. Because of incorporating attenuation in the 
propagator, both Figures 1b and 1c show an amplitude decay 
and phase shifts when compared to Figure 1a. Comparing 
Figures 1b and 1c, we can observe both amplitude and phase 
differences, especially in the areas highlighted by green 
ovals. As is shown in Figure 1c, the proposed method gives 
a more reasonable result because of the two phenomena: 1) 
Compared to Figure 1c, the amplitude in Figure 1b (with 
partial attenuation) is not well attenuated at relatively large 
dip angles (see the area highlighted by the green oval). 2) 
With an increased dip angle, the phase in Figure 1b generally 
becomes more similar to that in Figure 1a (without 
attenuation). This is because the modeling accuracy with 
only partial attenuation generally decreases with an 
increased dip angle.  
 
Matching filter 
 
A combination of equations 2 and 6 gives a simulation of the 
attenuation effect. To compensate this effect, we need to use 

Q in vv �  calculated by equation 3 to replace Qv  in equation 6, 

 
a)                  b)                  c) 

                 
Figure 1:  Comparison of wavefield snapshots without attenuation in (a), with attenuation only in the thin-lens term in (b), and with the proposed 
method in equation 6 in (c). An angle mute at 75° has been applied to all these snapshots. Here, the angle is measured from the line between the 
source and the point.  
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Q-TTI FFD WEM 

 ( ) ( ) ( )1 2 3 ,Q in v Q in v Q in vL v L v L v
z

� � �

w
= + +

w
                   (7) 

where 1L , 2L and 3L  represent the phase-shift, thin-lens 
and FFD terms, respectively.  However, because equation 3 
describes compensation of the Q effect including boosting 
the amplitude, involving vQ - inv in the FFD (L3) term causes 
instability in the implementation of equation 7. To obtain a 
stable Q-compensated wavefield, we refer to the work of Xie 
et al. (2015) and design a matching filter 
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where x is the location, 
1in v

u
�

 is obtained from  
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and 2in vu �
 is obtained from  

  ( ) ( ) ( )1 2 3 .Q in v Q in v Q in vL v L v L v
z

� � �

w
= + +

w
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Neither equation 9 nor 10 uses Q in vv �  as the velocity in the 

FFD (L3) term; therefore, they are stable. Because Qv  and 

Q in vv � are conjugate, instead of using equation 7 to calculate 

in v
u , we can approximate 

in v
u  as  

   ( )2
1, .inv invFu uZ �= x                                (11) 

A threshold 2O  needs be applied to ( )2 ,F Z x  in order to 
maintain the stability, and then equation 11 becomes 
   ( )2 2

1m in ,  , .in v in vFu uO Z �= ª º
¬ ¼x           (12) 

Equation 12 can also be approximated to  
   ( ) 2m in ,  , ,in v in vFu uO Z �= ª º

¬ ¼
x           (13) 

where O  is a real number. Note that, the approach of Xie et 
al. (2015) is designed for the Q-compensated RTM and the 
filter in their paper is calculated by comparing propagating 
wavefields with and without Q in the frequency domain. 
Therefore, applying this method to the time-domain RTM 
requires extra computational time to transform the 
wavefields between the time and frequency domains. This 
issue is easily avoided as the FFD WEM works in the 
frequency domain.  
 
Examples 
 
We show image comparisons for 2D synthetic (Figure 2) and 
3D real data (Figure 3) examples below. The synthetic data 
used to produce Figure 2 is generated from a Q-TTI model 
in which the TTI part is modified from the BPTTI model. 
The main modification adds a scaled image to the velocity 
model, as we do not use a density model for generation of 
the synthetic data. The background Q model is embedded 

with a strong attenuation body with a Q value of 20 (Figure 
2a). Figure 2b shows the image without Q compensation. We 
observe the weak amplitudes in the middle part (highlighted 
by the blue box) which approximately corresponds to the 
area in and under the Q body in Figure 2a. The attenuation 
has been adequately compensated for after using the 
proposed method, which is shown in Figure 2c. If we put the 
two images at the same location and shift them back and 
forth, phase shifts can also be observed. A comparison of 
vertical-wavenumber spectra is presented in Figure 2d, 
which shows that after Q compensation, the dominant 
frequency moves to a higher one.  
 
We then apply 3D Q-TTI FFD WEM to a field dataset from 
narrow-azimuth acquisition in the Porcupine Basin (Crean 
Survey). Besides the strongly attenuative structure, the value 
of which is estimated from comparing spectra at the surface, 
we also add background Q values to the model. Figure 3b 
(with the proposed Q-compensation method) presents a 
better image than Figure 3a (without Q compensation). For 
example, we can observe that the weak amplitudes in the 
area highlighted by the green box in Figure 3a; the Q effect 
is compensated for by using the proposed method; see the 
area highlighted by the red box in Figure 3b. Comparison of 
vertical-wavenumber spectra is shown in Figure 3c, which 
presents that the image with the proposed Q-compensation 
method contains a larger weight of high-frequency 
components than the one without Q compensation.  
 
Conclusions 
 
We develop an improved method for the FFD WEM in Q-
TTI media by incorporating the frequency-dependent, 
complex-valued velocity calculated by Futterman¶s formula 
into all the three terms (phase-shift, thin-lens and FFD) of its 
propagator. In this method, the propagator has a unique 
group of coefficients at each frequency and the FFD term 
also involves a complex-valued velocity. Compared to the 
traditional method that involves Q compensation only in the 
thin-lens term, the proposed method improves the simulation 
accuracy at relatively large propagation angles. To solve the 
instability issue in the Q-compensated propagator, which is 
introduced by including the complex-valued velocity in the 
FFD term, a matching filter is calculated by comparing two 
propagation wavefields in the frequency domain. Examples 
show that the proposed method adequately compensates for 
the attenuation and provides high-quality images for 2D 
synthetic and 3D real datasets.  
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Q-TTI FFD WEM 

a)                                                                              b)                                                              c)        

                            
        
                d)          

                   
Figure 2: Comparison of FFD WEM images using the synthetic data from a 2D Q-TTI model.  The TTI part is modified from the BP TTI model, 
and the Q model is presented in (a) where the Q value of the target attenuation body (in white color) is 20. (b) shows the image without Q 
compensation. (c) shows the image with the proposed Q-compensation method. (d) shows comparison of the vertical-wavenumber spectra. The 
green and red spectra correspond to the areas highlighted by the green and red boxes in (b) and (c), respectively. Here, we match the maximum 
values of the two spectra to zero, so the amplitude numbers are not the absolute values. If we use the absolute values, the green spectrum would 
generally be lower than the red spectrum in the presented range.  

a)                                                                       b)                                                           c)                                                     

    
 
Figure 3:  Comparison of FFD WEM images using a 3D field dataset from Crean Survey. (a) presents the image without Q compensation. (b) presents 
the image with the proposed Q-compensation method. (c) presents a comparison of the vertical-wavenumber spectra. The green and red curves in (c) 
correspond to the areas highlighted by the green and red boxes in (a) and (b), respectively. Note that, the amptliude numbers are not the absolute 
values and please refer to the caption for Figure 2d.  
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