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Introduction 
 
Least-squares imaging of primary reflection can overcome 
acquisition limitations and recover the reflectivity for 
desired amplitudes and resolutions (Wang et al., 2013). In 
shallow water environment, migration of multiples can help 
improving image quality at water bottom and shallow 
structure since it broadens the illumination compare to 
primary. But it also can suffer from strong crosstalk among 
multiples as well as diminished deep structure for lack of 
recorded surface multiple energy. Iterative data-domain 
least-squares migration of total reflection (LSMTR) gets 
benefit from both primary and all orders of multiple signals 
available in the data. More beneficially, it also can 
effectively suppress the crosstalk by iteratively data 
subtraction and remigration as well as an inversion-based 
deconvolution imaging condition. It produces a crosstalk 
free image with balanced contribution from each component 
including primary and multiples. 
 
The proposed LSMTR estimates the reflectivity model by 
finding the best least-squares fit of the modeled data to the 
observed data, using a gradient-based iterative method. 
However, one cannot match all the complex features present 
in field data with only a linearized Born modeling operator. 
Without any constraint on the inversion gradient, the noise 
content will also increase with iterations. This increased 
noise mostly arises from velocity model error, a wider 
bandwidth of pre-existing linear noise in the data and back 
scattered energy due to the presence of strong contrasts in 
the velocity model (Wang et al., 2016). Regularization or 
preconditioning can be applied in iterative algorithm to 
suppress migration artifacts, speed up convergency and 
improve inversion efficiency. In addition, proper fault 
constraints can not only preserve the real geological features 
but also improve the efficiency of inversion.  
 
In this work, we propose to utilize total reflection wavefield 
in a least-square sense and use convolutional neural 
networks (CNNs) to automatically detect faults as a structure 
constraint during inversion. Two field examples are shown 
here to demonstrate the capability of the algorithm. 
 
Methodology 
 
Least-squares migration of total reflection 
In conventional least-squares primary migration, a point 
source is used and the upgoing deghosted and demultipled 
pUimaU\ ZaYe¿eld acWV aV Whe boXndaU\ obVeUYaWion foU 
inversion. In LSMTR, the deghosted total downgoing wave-
¿eld consisting of both primaries and multiples is included 
in the source wavefield, and Whe WoWal Xpgoing ZaYe¿eld 

consisting of both primaries and multiples acts as full 
wavefield data for inversion. Since the inverted full 
wavefield image contains contribution from both primary 
and mXlWiple UeÀecWed eneUg\ VimXlWaneoXVl\, iW can impUoYe 
images in comparison to standard migration using only 
primary or multiple. And the inversion helps with reducing 
the strong crosstalk produced by interference between 
different orders of reflections. However, for tower stream 
data, it is challenging to balance the contribution between 
point source and downgoing wavefield. We adopt the 
approach as in Tu et al. (2016) to invert for another 
parameter Ȝ which represents the point source amplitude 
estimation during the inversion. 
 
Preconditioning with deep learning based structure 
constraint 
The objective function of preconditioned LSMTR can be 
expressed as: 
 

𝒇ሺ�̅�ሻ ൌ 𝒎𝒊𝒏
�̅�

ฮ�̅� − 𝑨ሾ𝝀𝒔 − �̅�ሿ𝑺−𝟏𝑺�̅�ฮ𝟐 
 
where 𝑓ሺ�̅�ሻ stands for the cost function to be minimized, 
𝐴ሾ𝜆𝑠 − 𝑑̅ሿ is the linearized Born modeling operator which is 
the exact adjoint of the migration operator and 𝑆  is a 
preconditioning operator. In this study, acoustic one-way 
wave-equation operators are used.  
 
We adopt structure-oriented smoothing with edge-
preservation as preconditioning (Hale, 2009) in LSMTR to 
suppress migration artifacts caused by irregular sampling or 
overfitting to the data noise: 
 
   𝒈′ሺ�̅�ሻ − 𝝈

𝟐
𝛁 ∙ 𝑫ሺ�̅�ሻ ∙ 𝛁𝒈′ሺ�̅�ሻ ൌ 𝒈ሺ�̅�ሻ 

 
while 𝐷ሺ�̅�ሻ is tensor-valued filter coefficients, 𝑔ሺ�̅�ሻ is the 
raw gradient and 𝑔′ሺ�̅�ሻ is the structure smoothed gradient. 
The tensors 𝐷ሺ�̅�ሻ can be scaled by any measure of coherence 
that is almost zero near discontinuities and approximately 
one where features are most coherent to preserve edges 
during smoothing. We calculate the semblance based on 
structural tensors which is imposed as a smoothing weight. 
This allows us to use machine picked fault likelihood as an 
additional constraint during inversion. 
 
Machine learning is becoming more useful in seismic 
interpretation, with one of its most successful applications 
being fault picking on seismic images. Most recently, some 
CNN methods have been introduced to detect faults by pixel-
wise fault classification (fault or non-fault) with multiple 
seismic attributes (Wu et al., 2019). Here we use similar 
approach in that paper which considers fault detection as an 
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Structure constrained least squares migration of total reflection and its field applications 

efficient end-to-end binary image segmentation problem 
using CNNs. It generates accurate fault likelihood maps on 
real datasets using multiple powerful CNN architectures to 
obtain superior segmentation results. We train our CNN 
model in two steps. First, we repeat the procedure of Wu et 
al. by training and validating with 200 and 20 pairs of 
synthetic seismic and fault images with only random noise 
added on, respectively. The resulting CNN model cannot 
distinguish between faults and migration swings on a field 
dataset which is heavily contaminated by migration swings. 
Since Tensorflow and Keras allow for continued training 
based on a pre-loaded model, we next added migration 
swings to each synthetic image. Starting from the previous 
pretrained CNN model we continue the training process until 
the training and validation accuracy converges. The CNN 
model we obtain from this second training step performs 
better than the pretrained model in distinguishing faults from 
migration swings, for both synthetic and real datasets.  
 
Field data examples 
 
NAZ dataset from Santos Basin 
First, we demonstrate our preconditioned least-squares 
migration using a field data example in Santos Basin, 

offshore Brazil. This is a narrow azimuth dataset (NAZ), 
acquired with 10 cables, 100 m streamer separation and 8 km 
streamer length. The sedimentary images in this area suffer 
from uneven illumination, visible migration artifacts, and 
sub-optimal resolution.  
 
As shown in Figures 1, our deep learning structure-
constrained least-squares technique helps resolve these 
problems, and the final image is better suited to reservoir 
characterization. The middle and right columns of Figure 1 
show the comparison between the final least-squares image 
and conventional migration in inline and crossline 
directions. With automatic machine-picked fault probability 
(last row in Fig. 1) imposed as the smooth weighting, the 
final result shows the benefits of conventional least-squares 
imaging without boosting overfitting noise. Compared with 
conventional smoothing preconditioning, our algorithm 
results in higher lateral resolution and sharper dipping fault 
planes in the sediment layer. Left column of Figure 1 shows 
the depth slice comparison at around 2.8 km in the same 
volume. It clearly indicates an enhancement in imaging the 
fault planes and improving spatial resolution. 

 
Figure 1:  Santos Basin field data examples: The top row is the conventional migration; the middle row shows the final structure-constrained least-
squares migration image at 5th iteration; the bottom row shows machine-picked fault probability. Left column figures show map view while 
middle column shows inline view and right column shows crossline view. The inline and crossline positions are indicated on first figure. 
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Structure constrained least squares migration of total reflection and its field applications 

 
WAZ dataset from Declaration 
Second, we further demonstrate our structure constraint 
LSMTR in extremely shallow water environment by 
showing another inline result in Declaration project. This is 
a tower streamer wide azimuth dataset (WAZ). The input 
data underwent a typical processing flow involving denoise, 
deghost, and velocity model building steps. The image area 

we cropped has a water bottom ranges only 200~300m. Fig. 

2a shows results of the conventional primary migration. It 
shows unbalanced illumination, especially for the shallow 
structure which is contaminated by strong acquisition 
footprint. Besides, the interference of all-orders of data 
generates strong crosstalk in the hard, shallow water bottom 
environment. Fig. 2b shows the conventional multiple 
migration. It partly solves the problem by better illumination 
in the shallow. But again, the crosstalk issue still exists and 
the deep structure is under poor illumination and buried by 
interference noises. Fig. 2c shows the final solution provided 
by our LSMTR technique. It solves all the issues in 
conventional imaging by balanced illumination from all 
orders of data, reduced crosstalk noise and with wider 
frequency-wavenumber band. Especially to the upper right 
where the water bottom depth is reaching 200m, the shallow 
structure and water bottom itself stands out quite clear. 
Specifically, the red arrow in Fig. 2a which indicates a 
multiple crosstalk is removed. Besides the faults structure is 
enhanced by preconditioning, more coherent seismic events 
and less migration noise shows in the final solution.  
 
Conclusion 
 
With advanced structure-constrained LSMTR algorithm, 
improved imaging of shallow water sedimentary geometries, 
minimized migration artifacts, significantly increased image 
resolution and enhanced fault structure can be achieved in 
few iterations. The final least-squares image with Santos 
Basin and LSMTR images with Declaration field dataset 
demonstrate our claim. Modern advanced imaging 
techniques like FWI and least-squares are required to run 
within limited production time for high quality large-scale 
multi-client projects. With help from machine learning, our 
highly efficient and automated LSMTR technique makes it 
feasible.    
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Figure 2: Inline image for Declaration field data examples: (a) 
conventional primary only migration, (b) conventional multiple 
only migration, (c) LSMTR with structural constraint at 4th 
iteration. 
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