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Summary 

A whole-space Green’s function framework for the representation of the acoustic wavefield is obtained from 

the Helmholtz wave equation. Under this framework, the wavefield is represented by a distribution of point-

sources in space and time, each corresponding to an elementary spherical wavefront.  

Intuition suggests the number of equivalent point sources actually required to represent the wavefield of 

interest might be small compared to the total number of speculative locations. Consequently, in spite of the 

problem’s innate ill conditioned nature, a satisfying solution can still be obtained by means of sparsity 

promotion. When a solution is reached, the wavefield can be reconstructed at new or existing locations by 

utilizing the framework in a forward modelling sense. 



Introduction 

Coarse crossline sampling is certainly one of the limitations of towed marine acquisition. Streamers 

simply cannot be towed close enough to each other so as to produce wavefield measurements free of 

crossline aliasing. In the presence of significant scattering outside the survey plane, dense sampling in 

all directions (crossline as well as inline) becomes a theoretical requirement for several processing 

algorithms applied within individual shot experiments, such as up/down wavefield decomposition and 

wave-equation multiple prediction. Clearly, if crossline sampling requirements are to be satisfied, 

wavefield reconstruction must be able to operate well beyond the limits dictated by classical sampling 

theory.  

Many established approaches to wavefield reconstruction use plane waves as their elementary basis 

functions. This choice is the origin of their need to work in small sliding data windows, especially in 

the presence of curvature in the time-offset domain. This requirement can constitute a limitation for 

applications such as crossline interpolation, where input is so sparsely sampled that it becomes 

impossible to conciliate two conflicting necessities: (1) to partition the data such that curvature is 

negligible, and (2) to ensure a sufficient number of input traces is fed to the reconstruction algorithm 

in each window. 

At the scale of the observations that is characteristic of exploration seismology, spherical waves seem 

better suitable to represent seismic data than plane waves, as each spherical wavefront captures 

information distributed over the entire offset range, without requiring local sliding windows. As 

shown in the next section, the framework representing the proposed spherical decomposition in an 

acoustic context can be derived directly from the Helmholtz wave equation.  

Theory 

The linearity of the wave equation guarantees the wavefield 𝑃 resulting from the ignition of a 

multiplicity of sources distributed across a given medium (of arbitrary complexity) always amounts to 

the sum of the wavefields 𝐺 produced by elementary point-sources in the same medium (i.e. 𝐺 is the 

medium’s Green’s function) 

𝑃(𝜔, 𝐫) = ∫ d𝑟′ 𝜌(𝜔, 𝐫′) 𝐺(𝜔, 𝐫 − 𝐫′)  (𝑒𝑞. 1). 

In (1), 𝜔 is the angular frequency, 𝐫 = {𝑥, 𝑦, 𝑧} the location of a generic receiver sensor (e.g. mounted 

on the seismic streamer) and 𝐫′ = {𝑥′, 𝑦′, 𝑧′} the generic location of an elementary point source in the 

spatial and temporal distribution 𝜌. Through the perturbative construct utilized in Inverse Scattering 

literature (Weglein et al., 1981 and references therein), (1) is generalized as 

𝑃(𝜔, 𝐫) = ∫ d𝑟′ 𝜌𝛼(𝜔, 𝐫′) 𝐺0(𝜔, 𝐫 − 𝐫′)          (𝑒𝑞. 2),

where 𝐺0 is the Green’s function for a reference constant medium (e.g a whole or half space) with

velocity 𝑐0. The role of 𝜌𝛼 in (2) has changed remarkably with respect to the role of 𝜌 in (1): 𝜌𝛼 now

represents a distribution of point-sources which can effectively produce, in a constant reference 

medium, the same wavefield 𝑃 as the physical source produces in the complex medium. 𝜌𝛼can

therefore be seen as a scattering potential (Weglein et al., 2003) responsible for all scattering 

phenomena. Because a whole-space Green’s function is indeed an elementary spherical wavefront, (2) 

represents a spherical wave decomposition of the acoustic wavefield 𝑃. 

It is further possible to define an augmented decomposition,  

𝑃(𝜔, 𝐫) = ∑ ∫ d𝑟′ 𝜌𝛼(𝜔, 𝐫′, 𝑐𝑖) 𝐺0(𝜔, 𝐫 − 𝐫′, 𝑐𝑖)

𝑖

 (𝑒𝑞. 3), 

where the background velocity is also used as a spectral variable. In this case, although 𝐺0 still

represents a whole-space Green’s function,  

𝐺0(𝜔, 𝐫 − 𝐫′, 𝑐) =
𝑒−𝑖

𝜔
𝑐 |𝐫−𝐫′|

|𝐫 − 𝐫′|
, 

the single reference medium is replaced by a multiplicity of reference media. Although the additional 

degree of freedom can be seen as physically redundant, it is intuitive to realize that it allows each 

individual hyperbolic event in 𝑃 to be mapped into a single equivalent source.  



Numerically estimating 𝜌𝛼 can be a daunting task as, in absence of prior information, the equivalent

source responsible for a particular event might reside anywhere in 3-dimensional space and time, 

resulting in a massively underdetermined numerical inversion problem. Crucially, the Green’s 

function framework described possesses the compressive characteristics required to work in 

combination with sparsity promoting solvers. As shown further in this document, early numerical tests 

conducted on real and synthetic datasets prove that satisfactory reconstruction of the seismic 

wavefield is possible well beyond the limits dictated by classical sampling theory. 

As formulated, the proposed wavefield reconstruction method displays similarities with diffraction 

imaging and earthquake monitoring (McMechan, 1982; Chambers et al., 2009; Artman et al., 2010). 

Specifically, ray-traced and full-waveform Green’s functions have been used in a compressive sensing 

context for the simultaneous determination of location, timing and moment tensor of natural and 

induced earthquakes (Vera Rodriguez et al., 2012; Vera Rodriguez and Sacchi, 2014). In contrast to 

all these methods, the described approach does not attempt to account for the wavefield’s actual 

propagation history and does not require prior knowledge of the medium. 

After all integrals are discretized, expression (3) can be cast into a linear system of the form 𝐝 = 𝐿𝐦: 

the elements of 𝑃 are arranged to populate vector 𝐝, the element of 𝜌𝛼 to populate vector 𝐦 and the

columns of 𝐿 are filled with different realizations of the whole-space Green’s function 𝐺0, each

characterized by an equivalent source location 𝐫′, timing and background velocity. A solution is

sought for applying a numerical solver that seeks to fit the data 𝐝 while minimizing the number of 

nonzero coefficients in 𝐦. When a satisfying solution is reached, the wavefield can be reconstructed 

at new or existing locations by utilizing (3) as a forward modelling expression. 

Examples 

Finite difference synthetics. A first numerical example is conducted on a set of synthetic finite-

difference data, simulated in a dipping plane reflector model. The wavefield is uniformly sampled 

with a trace spacing of 20.0m in the offset range between -2500 and 2500m (Figure 1b) and 

conditioned to contain temporal frequencies up to approximately 30Hz (Figure 1f). The wavefield is 

then uniformly under-sampled by a factor of 10 to form the input dataset (Figure 1a) with a trace 

spacing of 200m, where temporal frequencies above 3.75Hz are spatially aliased (Figure 1e). In this 

example, spectral estimation is conducted using an iteratively re-weighted least squares scheme, 

where anti-aliasing weights are obtained from low frequencies. The reconstructed wavefield and its 

FK spectrum are displayed in Figure 1c and Figure 1g, where aliasing has been resolved well beyond 

the constraints set by classical sampling theory. 

Real data. The reconstruction scheme is further tested on the near offset portion (130 to 1000m) of a 

proximal streamer taken from a North Sea shot gather. The fully sampled data (70 traces with an 

offset interval of 12.5m) display significant frequency content up to roughly 110Hz (Figure 2a). 

Uniform under-sampling by a factor of 10, leads to a heavily aliased input dataset composed of 7 

traces, mutually distanced by 125m (Figure 2b). The reconstructed result in Figure 2c (obtained using 

an anti-leakage matching pursuit solver) appears to be of satisfactory quality, considering the distance 

between input traces and the bandwidth of the signal. As expected, the magnitude of the 

reconstruction error (Figure 2d) is small in correspondence with available input traces and higher 

otherwise.  

Conclusions 

Wavefield reconstruction is pursued by promoting a sparse representation of the available 

measurements under a whole space Green’s function framework. The framework itself can be derived 

from the Helmholtz equation and is therefore specific to seismic wavefields. 

Numerical tests conducted on real and synthetic datasets prove that satisfactory reconstruction is 

achievable well beyond the limits dictated by classical sampling theory. Additionally, the method 

under consideration does not require prior knowledge of the earth’s velocities. 
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Figure 1 - Synthetic example. (a) Input data, (b) true wafevield, (c) reconstructed wavefield, (d) 

difference. FK spectra of (e) input data, (f) true wavefield, (g) reconstructed wavefield, (h) difference. 
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Figure 2 - North Sea example. Trace plots and FK spectra of (a) the fully sampled dataset with a 

trace spacing of 12.5m, (b) decimated dataset with a trace spacing of 125m, (c) the reconstructed 

dataset with a trace spacing of 12.5m obtained using data in (b) as input, (d) the reconstruction error. 


