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transcribed many times over. While optimization of single pro-
cesses, using advanced algorithms, and access to almost limitless 
resources is important, it is only as important as the ability to both 
effectively apply the algorithm, and manipulate the underlying 
data. Long and Martin (2019) outline a method of data mining 
for parameter selection to reduce the impact of manual processing 
of data. To fulfil their work, they require dynamic manipulation 
of the data and a productive implementation of the geophysical 
tasks. They also need this to happen in a programme and platform 
independent way, where more resources mean ever more fruitful 
returns on turnaround.

In this paper we describe a data processing system that is 
platform agnostic, and enables the optimal management of both 
data and algorithms. The system has an engine that will readily 
accommodate the rise and implementation of both pragmatic 
and advanced machine learning algorithms, and enable the 
near instantaneous processing of data, such that interactive 
processing, independent of the algorithm, is achievable. The 
system incorporates a constant statistical feedback loop enabling 
automated restarts and real-time adjustments to compute resource 
requirements. The statistical information produced by the system 
is used to optimize live project performance as well as future 
project planning and automation.

Method
Multi-dimensional workflow engine
The raw output of today’s sophisticated imaging algorithms 
generally contains five or more dimensions. In addition to three 
spatial dimensions, angle and azimuth or vector offsets provide 
two additional dimensions. The dimensionality can be extended 
farther by other binning considerations  such as specularity. As 
a result the output images quickly become very large, often in 
the range of hundreds of terabytes. The sheer size of the data 
sets produces significant challenges in post-processing. Several 
high-dimensional operators must be applied to the raw output in 
succession to produce a final image or set of common image point 
gathers. In a typical workflow, operators of different dimensions 
are applied to different combinations of sub-planes, volumes and 
hyper-cubes in the raw gathers. Often the dimensions used in one 
process are different than both the preceding and following steps. 
An easy way of addressing this complexity is to implement each 
post-processing filter as a separate program which reads data in 
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Introduction
The industry associates data processing with the application of 
geophysical algorithms to seismic data, but this definition is too 
narrow. We should consider a broader meaning particularly in 
these times of increased automation, and time and cost conscious-
ness. If processing is a method to produce information from the 
manipulation of data, then we should consider the framework 
that enables this process. A system must exist to facilitate the 
work. Generally, systems are a collection of computers, networks, 
processes and to a lesser extent people. For any given input, they 
create an output, which in seismic data processing can be the 
application of a geophysical algorithm, or it can be reordering, 
reducing or aggregating data. In this system, the headline grab-
bing geophysical process may only be a small part of the work. 
The underlying framework needs to be as efficient as it can be, 
either managing the data, enabling the geophysical process, or 
both.

While effective seismic data processing systems can reduce 
seismic project turnaround times, data volumes and algorithm 
complexity are increasing. This is occurring in an environment 
where pressure is growing to reduce data delivery times. As a 
consequence there is a growing interest in all forms of automa-
tion. Advanced computational science is more important than 
ever to help achieve the goals of near instantaneous seismic data 
processing. In this context, Martin and Bell (2019) presented an 
example of automating depth imaging velocity model building. A 
Monte Carlo simulation, using advanced inversion and migration 
algorithms, enables an order of magnitude improvement in turn-
around. The mass accumulation, sorting and processing of data 
in the simulation requires an efficient processing system, without 
which both the automation and timeline reduction would not be 
achievable. Alternatively, there are examples of using pragmatic 
and pure machine learning algorithms to build models with Full 
Waveform Inversion, including Araya-Polo et al. (2018); Øye 
and Dahl (2019) and Yang and Ma (2019) all of which perform 
various flavours of deep neural networks, convolutional neural 
networks or fully convolutional neural networks.

The outlined examples are attempting to reduce turnaround 
for isolated processes within a data processing project. A typical 
modern seismic data set may have around 20 trillion samples. The 
data volume will be manipulated, processed, validated, sorted, 
transformed, assembled, accumulated, reduced, increased and 
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disk I/O becomes a major bottleneck, exploding the wall clock 
time necessary for post-processing.

Engine benefits
Trace-based flow engines are straightforward to implement 
and have long been standard in seismic processing. They are 
not, however, well suited to processing flows where multi-di-
mensional operators must be applied to large data sets of even 
higher dimensionality. Given the size of modern data sets and 
the need for parallelization, piping a connected set of processes 
also becomes problematic. To address this dilemma, we have 
implemented a high dimensional flow engine with the following 
key design features:
1. � Keep data in memory and pass it between processing mod-

ules which have different data requirements such that there 
are no intermediate data sets written to disk.

2. � Automatically handle large-scale parallelism and domain 
decomposition.

3.  Perform dynamic work allocation and load balancing.
4. � Provide checkpoint restart capabilities and statistical feed-

back.

Engine flexibility
In this system a geophysical user is able to create a flow consist-
ing of any number of geophysical operators. These may range 
in complexity from simple 1D filters to complex 4D and 5D 
operators that work directly on gathers. The dimensionality of the 
entire data set may change several times in the flow. For example, 
a stack would reduce the dimensionality, while a decomposition 

the order presently needed and writes an intermediate data set 
which will be read by the next step. While simple to implement, 
this approach introduces an order of magnitude of more input and 
output (I/O) and disk storage than would be needed if the entire 
processing sequence could be performed in a single flow. The 

Figure 1 Schematic workflow detailing a dimensionality expansion and contraction 
within a single sequence.

Figure 2 Workflow depiction of a multi-dimensional 
process applied to higher dimensionality data.
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Workflow examples
Figure 1 depicts a workflow in which an image or set of common 
image point gathers are processed in a frequency-dependent 
manner by three instances of a 3D filter module. The workflow 
begins with an input module, which defines the input data set. 
In this workflow, the input can be of any dimensionality greater 
than or equal to three. In addition to naming the data set, this 
module can be parameterized to choose only a portion of the file 
on disk to be processed if desired, which can be especially handy 
for running a test line. If the dimensionality is greater than three, 
the input data will be automatically broken into sub-volumes as 
described by the parameters given to the 3D operators which 
will consume the data. The first module, Transform, increases 
the dimensionality by decomposing each sub-volume into three 
frequency bands, passing on a four-dimensional hypercube to 
the Split module. The Split module will route each frequency 
volume to the appropriate instance of 3D filter. Each instance is 
parameterized independently to optimally handle the frequency 
content in each frequency band. The three frequency bands are 
then rejoined before a Stack module combines the frequency 
bands and presents the Output module with data matching the 
original dimensions of the input.

This flow implements several complex data handling chal-
lenges including data selection and decimation; iterating over 
multiple dimensions, and dimensionality changes, all with 
simple modules which expect to be given the atomic type of 
data they are designed for. Similar workflows are built to per-
form time-varying, depth-varying, mask-based or horizon-based 
processing for all modules without introducing any data 
handling complications in the filters and computational kernels 
comprising the modules.

into frequency panels would increase the dimensionality. Each 
module is parameterized by the user to specify which dimensions 
it will act on. For example, a 3D smoother could be applied to any 
three dimensions in a 5D data set.

During execution, each processing module expects to see 
data that is compatible with its design and parameterization. 
For instance, a 2D filter parameterized to operate on dimensions 
x and z expects to be fed x-z planes. The processing system 
automatically buffers and loops through higher dimensional data 
in the pipeline to provide each module with atomic data. The 
key to this system is a two-step initialization process, in which 
the metadata of the input data set is analysed along with the 
data needs of all the operators. The metadata makes two passes 
through the workflow. On the forward pass modules apply any 
modifications they may make to the metadata, such as dropping 
a dimension for a stack, or modifying an axis when interpolation 
occurs. Then the metadata traverses the workflow in reverse and 
each module annotates its data requirements. Once this task has 
been completed, the system knows the smallest unit of data that 
can feed the workflow. It can then decompose the input data set 
into discrete units that can be processed independently and make 
decisions about how to perform domain decompositions when 
necessary. Each independent unit of work is represented as a 
work ticket which is dynamically assigned to a node or group of 
nodes. The shape of tickets can be further refined to optimize I/O. 
Since each ticket can be independently computed, they provide a 
natural granularity for check pointing. Statistics regarding I/O, 
inter-node communication and computation are automatically 
gathered at each step. This information is used to identify system 
issues and bottlenecks, and to identify and remove ailing compute 
nodes.

Figure 3 Workflow schematic detailing the 
application of a multi-dimensional process to higher 
dimensionality data, where the application is to the 
slowest data dimensions. 
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convoluted workflows that required these variations become sig-
nificantly more challenging for applications of multi-dimensional 
processes on high-dimensional data. As previously described 
the new platform automatically manages the complications of 
dimensional expansion and domain transform, and enables ‘near 
instantaneous’ applications to complex algorithms, which in turn 
can reduce testing turnaround.

Conclusions
Seismic data processing means more than the application of 
geophysical algorithms to discretely sampled data. As computer 
power is consolidated into mega-centres, and individual proces-
sor speeds grow exponentially, we allow the complexity of the 
geophysical tasks to increase as we seek to honour the theoretical 
physics. At the same time, seismic data processing volumes are 
increasing, both volumetrically, and dimensionally as we explore 
ever more innovative ways of applying geophysical algorithms.

The primary focus of automation in seismic processing is 
to remove human intervention using creative and pragmatic 
machine learning. It is a growing aspect of our industry, as seis-
mic contractors investigate and implement new and innovative 
ways to reduce the time it takes to deliver data.

In conclusion, we face an industry where, in the midst of 
increasing pressure on delivery, compute resources are being cen-
tralized and geophysical algorithms are becoming more complex 
and resource intensive. To enable an effective throughput of con-
glomerated geophysical processes we have developed a platform 
that can seamlessly handle any data, regardless of its dimensionality 
or the system architecture on which it is being applied. Resources 
are optimized, and the user interaction with the data is minimized. 
Self-regulation of resource needs, whether dynamically balancing 
work, or rejecting and correcting failing components, is a key 
element of the engine. A detailed statistical feedback loop allows 
the user to understand minute-by-minute progress of the workflow, 
and enables more accurate future forecasting of project work using 
data analytics on automatically populated databases. Whether 
the system is resolving singular compute-intensive processes, or 
convoluted piped workflows, the main benefit of the new engine is 
a significant improvement in project turnaround.
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Figures 2 and 3 graphically depict the difference in applying a 
three-dimensional filter to different sub-volumes of data sets com-
prising five-dimensional azimuth sectored angle gathers in depth 
and four-dimensional offset gathers in time. In Figure 2, the data set 
has five dimensions, which are stored on disk in the order: z, angle, 
azimuth, crossline and inline. In this example, the 3D smoothing is 
applied on the fastest three dimensions, z, angle, and azimuth. The 
processing in this case is straightforward. The minimum amount 
of data needed to feed the pipeline is an azimuth-sectored angle 
volume at a single common image gather point (CIGs), for which 
I/O will be efficient. Tickets can be built from one or more CIGs 
and each computational node can work on different CIGs inde-
pendently. In Figure 3, things are more complicated. In this case 
the four dimensional data set is stored on disk in the order: time, 
offset, crossline and inline, and the smoothing is to take place over 
the three slowest dimensions. It would be disastrous from an I/O 
perspective to read and write one sample at a time as the data needs 
of the workflow suggest. Instead all four dimensions are read at 
once and the sub-volumes for each time sample are staged through 
memory. The loop over time is implicitly handled by the flow 
engine. Due to the memory requirements, the individual compute 
nodes are no longer independent. In this case an automatic domain 
decomposition is performed and all the nodes work together to 
accomplish the desired workflow. As a result, the composite run 
time for filtering the three slowest dimensions is virtually identical 
to the run time for processing the three fastest dimensions. These 
examples use a single module, but the same principles apply 
to more complex workflows with multiple modules exhibiting 
different data requirements.

Discussion
In the post-processing stage of a seismic processing project, a num-
ber of piped workflows are used to apply geophysical algorithms as 
part of a sequence. A single component of that sequence is shown 
in Figure 1, where a 3D Filter is applied after a domain transform. 
The type and number of workflows used in post-processing depends 
on the data; what it will be used for, and the contractual obligations. 
More often than not a sequence is a collection of data conditioning, 
editing and refining, requiring multiple data outputs as well as 
dimensional variations and domain transforms.

To achieve a successful outcome using a conventional 
approach a geophysicist needs to interact with the data by 
modifying each workflow. All individual components need to be 
optimized, both for I/O and for the computer resources required 
to efficiently complete the task; what might be appropriate for one 
component might not be suitable for another. The new automated 
engine optimizes the resource requirements, while minimizing 
the network load. As a consequence, a simple post-processing 
sequence of workflows including denoising; muting, stacking, 
filtering and whitening can be reduced to a single sequence with 
each individual task optimized, reducing the time taken for the 
entire chained workflow by orders of magnitude.

Singular workflows, such as those found in Figure 1, might 
also be used during the testing phase of a project. Many post-pro-
cessing tasks are ‘near instantaneous’, particularly when they 
contain simple components that apply a process without dimen-
sionality reduction and expansion, or domain transforms. More 




