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Leveraging deep learning for seismic image 
denoising
Elena Klochikhina1*, Sean Crawley1, Sergey Frolov1, Nizar Chemingui1 and Tony Martin1 describe 
a supervised machine learning approach for attenuation of noise, formed by suboptimal 
destructive interference within the migration process. The authors outline the training and 
validation approach of their deep convolutional neural network, and demonstrate its 
application on field data sets.

The impact of noise
Noise can affect the quality of seismic data, damaging the 
geological integrity of the final migrated image; therefore, we 
should minimize its impact. If not properly attenuated it may 
affect amplitude-related attributes, lead to difficulties during the 
quantitative interpretation (Cambois, 2001; Ball et al., 2011), and 
result in an inaccurate appraisal of the reservoir.

Noise can take many forms. In this paper, we consider the 
noise generated during the migration stage. The noise sources 
might be as diverse as residual impulsive noise, multiple energy, 
mispositioned primary energy due to errors in estimation of earth 
properties, or insufficient illumination caused by limitations in the 
data acquisition, and/or complex media-related propagation effects. 
In each case the migrated image may be affected by suboptimal 
destructive interference of the migration isochrones (Gardner and 
Canning, 1994), resulting in a contamination of the data by coher-
ent noise. We concentrate on the latter case where the resulting 
noise is due to inadequate illumination in a complex media.

An experienced geophysicist may easily differentiate signal 
and noise in a seismic section. It can be challenging to remove 
the noise without affecting the signal, because the coherent noise 
often has similar seismic characteristics to the desirable compo-
nents of the data. Several approaches can minimize the migration 
artefacts. These include data regularization prior to migration, 
filtering during migration, post-processing after migration, and 
least-squares migration methods.

Data reconstruction is often used to overcome irregularities 
in data coverage (Chemingui and Biondi, 2002; Schonewille et 
al., 2009). Depending on the method and migration algorithm, 
regularized data may produce less noise, but can require a signif-
icant effort in the data preparation. Moreover, regularization may 
impact the resolution of the final image. Aperture optimization 
may also reduce the impact of noise generated in the migration 
process (Alerini and Ursin, 2009; Klokov and Fomel, 2012), 
but requires the knowledge of local structural dips, and results 
are dependent on the accuracy of such dip information. There 
are pragmatic alternatives such as filters that can be designed 
to attenuate the noise in the image domain (Hale, 2011). As the 

noise is often coherent, sharing seismic characteristics with the 
signal, it can be challenging to design filters that only remove the 
unwanted components but preserve the useful energy.

The adoption of artificial intelligence
In the early days, computers learnt how to solve problems that 
were intellectually difficult for humans by following a sequence 
of strict mathematical rules. The true challenge was to create a 
machine that could solve problems that humans solve intuitively, 
problems that are hard to describe in formal rules. This knowledge 
somehow needs to be captured by a computer to behave in an 
intelligent way (Goodfellow et al., 2017). This is a challenge for 
creating an artificial intelligence (AI). To overcome the problem 
the field of machine learning (ML) was born: AI systems were 
given the ability to acquire knowledge by extracting patterns from 
the data and gather knowledge from experience. Classical ML 
methods are highly dependent on features that are prepared by 
humans. It could be time consuming and also difficult to extract 
and provide a right set of features without human bias in order for 
an ML algorithm to perform well. Deep learning (DL) overcomes 
this problem by extracting information from raw data: complex 
representations can be learnt from the input by decomposing the 
data into simpler intermediate representations. DL models look 
at the data on different scale levels layer by layer. Deep learning 
has an ability to perform automatic feature extraction from raw 
data without depending completely on human-crafted features. 
Together with advanced architectures and optimized training 
approaches, increase of training data for DL algorithms can help 
in reaching human performance on complex tasks by learning 
from a vast variety of examples.

Data is not in short supply within the seismic processing busi-
ness, however the adoption of artifical intelligence has not been 
as extensive as in other data-rich industries. There is evidence that 
it is changing, as seismic companies seek to augment decision 
making and reduce project cycle times. The number of papers 
and manuscripts describing applications of artificial intelligence 
and data analytics has grown at geophysical conferences and in 
geophysical journals. The trend in paper numbers suggests meth-
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The stability and quality of predictions depends on the network 
architecture, the hyperparameters and the training data set. In our 
example, the training data were created using noisy images as 
an input to the CNN and clean images (noise-free) as an output.

The architecture of a convolutional neural network contains a 
number of different operations; the goal of the trained network is 
to replicate human endeavour. In our case we are trying to iden-
tify and remove coherent noise from a seismic image. A typical 
CNN architecture for computer vision problems consists of a 
number of different components that include convolutional layers 
and activation functions. It may also contain other operations like 
downsampling (or pooling), upsampling, batch normalization, 
etc. All network components are connected in the form of a graph.

The essential components of CNN architectures are con-
volutional layers separated by non-linear activation functions. 
Convolutional layers use filters, which are also known as kernels. 
Each filter is an array consisting of a sequence of numbers or 
weights. The filter slides over the image, only being exposed to 
a small number of input pixels at any time. The operation used 
is a dot product of the input values with the filter weights. The 
output is a single number per sliding window. The results over the 
entire input is called an activation or a feature map. Depending on 
the filter, each activation map identifies distinguishing features; 
with each progressive convolutional layer, more complex features 
can be determined. Non-linearity is a crucial part that allows the 
neural network to approximate complex operations necessary for 
solving a given task. The so-called activation functions are used 
for this purpose.

There are many other components that could be used in CNN 
architectures. In our denoising architecture, we use a pooling step 
for downsampling. There are several types of pooling, and we used 
a maxpooling operation, which selects the largest number from 
the neighbouring cells during the downsampling process. This 
reduces the spatial dimensionality of the input data scale, limiting 
computational cost and increasing the exposure of the input for the 
next convolutional layer. The opposite operation is upsampling that 
is used to refine spatial sampling of the feature map.

The hyperparameters of a convolutional neural network are 
its structure, components, and training specifications. To achieve 

ods invoking artificial intelligence-enabled automation may be 
the future of our industry. The combination of data and computer 
science with geophysics may be applicable to every aspect of 
a seismic processing project. From unsupervised (Martin et al., 
2015) to supervised (Farmani and Pedersen, 2020) classification 
of denoising workflows, and support vector regression for data 
interpolation (Jia and Ma, 2017) to parabolic dictionary learning 
for data reconstruction (Turquais et al., 2019), most aspects 
of data domain processing are being tested. Using a variety of 
neural network approaches, efforts are being made to compare 
and contrast the velocity model building with conventional 
inversion-based schemes (Øye and Dahl, 2019; Yang and Ma, 
2019; Zheng et al., 2019). The reported results look encouraging.

Using a deep convolutional neural network for 
image denoising
For coherent noise attenuation, rather than explicitly formulating 
filters as in conventional methods, we present an AI approach that 
utilizes a deep convolutional neural network (CNN) to achieve 
the same goal. The main components of CNNs are convolutional 
filters that are iteratively adjusted during the training step to 
handle the artefacts and produce clean outputs from the noisy 
inputs. The trained models are then used to denoise the seismic 
images from field experiments.

A neural network may act as a universal function approxi-
mator to mimic the characteristics of a complex function  F that 
maps a noisy input x to a noise-free output y:

� (1)

The goal of the training is to find a transformation   that 
maps x into a set of corresponding y. To do this we minimize a 
cost function ( J ), that is defined as a difference between the 
transformed inputs y’ and the desired clean outputs y, with respect 
to the parameters of the trained network  in L2 sense:

� (2)

� (3)

Figure 1 The architecture used for the deep learning 
process.
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The bottom layer takes an input from the left branch and 
applies two convolutional layers.

The expansion path receives the input from the bottleneck 
and also consists of four blocks; each block has two convolu-
tional layers followed by an upsampling procedure. After each 
upsampling step, the number of filters in the convolutional layers 
halves.

The corresponding blocks of the contraction and expansion 
paths are connected by ‘skip connections’. This helps to solve the 
problem of a vanishing gradient during the training stage and sim-
plifies the prediction task, as there is no need for reconstruction 
of the image at full resolution from its compressed representation.

To accommodate the challenge, we modified the convolu-
tional blocks of U-net and fine-tuned the hyperparameters of the 
network during the training process to achieve better performance 
of the neural network. In order to reduce the likelihood of overfit-
ting, we added dropout layers.

We modelled synthetic shot gathers, which were migrated to 
form the noisy inputs and clean outputs used in the training step. 
We subsampled and migrated the synthetic data to generate the 
coherent noise in the images. The noise-free output consisted of 
clean images from the migration of appropriately sampled data. 
The image patch size for training was 256x256 pixels (Figure 2).

We carefully selected the data set so that it included variations 
in the following: frequency content, structural dip, amplitude, 
and noise character and level. To increase the variability of the 
input, we used data augmentation, which included horizontal 
flips, random crops and sign reversal, filtering and scaling with 
depth, resulting in approximately 100,000 total input samples. 
Hyperparameters such as learning rate schedule, dropout rate and 

the best performance of the convolutional neural network, we 
optimize the hyperparameters through testing. In practice, the 
network is trained using user defined data. This is critical for 
the success of the neural network to achieve its goals. The data 
needs to be representative of the problem we are trying to solve. 
The training happens over the course of multiple epochs. Each 
epoch consists of multiple iterations. Each iteration uses a subset 
of the input data set, called a batch. On average, every epoch 
passes through all input data samples once. Data augmentation 
enables a modification to the pool of training data. It is one way 
to increase the number and variability of the data set, enabling a 
more robust prediction and resulting in an increase in the level of 
sophistication of the trained network.

Specifics of the architecture
Among the wide variety of commonly used network architectures 
for image denoising in computer vision, we considered the U-net 
architecture (Ronneberger et al., 2015) to be most suitable for this 
problem. During our testing phase, it showed better convergence, 
faster training and solves the problem naturally as it enables 
operations on different feature resolutions (Figure 1).

The architecture consists of three parts: the contraction (left 
branch), the bottleneck (bottom) and the expansion (right branch). 
Each convolutional layer receives an input and applies a set of 
3x3 filters, followed by a nonlinear activation function.

The contracting path consists of four blocks; each block has 
two convolutional layers followed by a downsampling procedure 
(maxpooling). The number of filters in the convolutional layers 
doubles each time the resolution decreases, so the architecture 
retains the ability to explain complex features present in the input.

Figure 2 Examples of data used in the training of the 
convolutional neural network.
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studies demonstrate the ability of the trained network to attenuate 
the noise from data sets that represent two geologically different 
settings. We used only synthetic data to train the neural network; 
therefore, the case studies demonstrate the ability of the network 
to generalize outside the training data set.

We compared performance of the CNN-based denoising 
tool with an application of a commonly used structure-oriented 
filter (Hale, 2011). We could parameterize the filter differently 
to preserve the primary energy; however here we were focused 
primarily on the noise attenuation aspect. More aggressive filter 
settings can better eliminate the noise at the cost of damaging 
image resolution.

Example one – offshore Brazil
In the first example from Brazil, there is strong and pervasive 
coherent noise. The upper yellow arrow in Figure 4 highlights 
where this is most evident. The middle yellow arrow in the 
same figure shows coherent noise above a high contrast and 
rugose surface. The migration noise directly overlying the 
unconformity distorts the seismic events, making interpretation 
challenging. In all cases, the noise shares seismic characteristics 
with the signal that we want to use and preserve, such as 
dipping fault planes, and the flanks of the deeper steep-sided 
body. Figure 5 shows the result of using the CNN on the 
input data. The blue arrows show the removal of the coherent 
noise. The reflectivity above the rugose unconformity is more 
continuous, no longer disrupted by the noise forms, and there is 
no noise contamination of the data abutting the deep steep-sided  
body.

The denoised section is much cleaner, and reflectivity is 
easier to track. Steep dipping energy, such as fault planes, 
are still present. The difference of the application (Figure 6) 
demonstrates the impact of the CNN – a large amount of noise 
has been removed. There are indications that the process has 
attenuated some steep dipping energy that correlates with the 
noise; however, the output section (Figure 5) shows that much of 
this energy remains unscathed.

batch size were adjusted during the training phase to minimize the 
prediction error. We trained the network for 50 epochs on a single 
GPU with 32 Gb of memory.

The challenge of overfitting
A common challenge for machine learning algorithms is overfit-
ting. This occurs when the trained network’s performance shows 
great promise on the data used for training, but has a poor success 
rate when attempting to generalize on previously unseen data.

This happens when the capacity of the model is too large, 
compared to the diversity of a data set used for building the 
model. With neural networks, this occurs when there are too 
many parameters. The model may provide great flexibility and 
approximation power, but the amount and variability of the data 
given to it is not enough to constrain the weights within the net-
work, at least not without regularization. As a result, the network 
makes unreasonable predictions for any data that differs from the 
training set, in our case frequency, amplitude or noise level. As 
a precaution, the input data set is split into two subsets, one for 
training and the remainder for validation. We then monitor the 
trained model’s performance on the latter. A gradual decrease 
of the loss function for both training and validation data sets 
implies reasonable generalization, assuming fair selection of the 
validation data set.

To reduce the overfitting problem, we used a dropout 
technique. During the training step, we carefully monitored the 
behaviour of the objective function for both the training and val-
idation data sets, assuring the proper behaviour whilst preserving 
an effective convergence (Figure 3).

Case studies
The denoising capabilities of the neural network were tested 
on two field data sets, one from a deep water survey offshore 
Brazil, the other from a shallow water example in the North 
Sea. In both cases, insufficient illumination and complex media 
cause coherent noise in the images that have similar seismic 
characteristics just as the signal we want to preserve. The case 

Figure 3 Objective functions for both training and 
validation processes. The two were monitored during 
the process to confirm equivalent convergence for 
both.
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Figure 5 CNN denoised data. Blue arrows indicate 
that the model has removed almost all the coherent 
noise from the seismic section.

Figure 6 The application difference shows the energy 
removed from the seismic section. Orange arrows 
indicate some primary energy has been attenuated.

Figure 4 Input seismic data. The yellow arrows 
show the migration-related noise the CNN model is 
attempting to remove.
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The injectites have localized reservoir potential. In Figure 10 
(blue arrows), we see that the trained neural network has removed 
more noise; the events overlying the source of the noise are easier 
to interpret. Figure 11 shows the impact of the deep-learning 
approach. The noise has almost been eradicated. It is worth noting 
the orange arrows on Figure 11. They show that the injectites 
are affected by the denoise process. Their shape is very similar 
to the coherent noise created in the migration process, as each 
migration-related noise form has an apex. Consequently, the 
process does attenuate some energy from the injectites but no 
more than the conventional approach, which underperforms on 
the migration related noise attenuation.

Discussion
The goal of this work is to demonstrate the denoising capabilities 
of a convolution neural network, in particular the attenuation of 
coherent noise formed during the migration process. The network 
was trained using approximately 100,000 input samples, and 

Figure 7 demonstrates an application of a structure-oriented filter. 
The upper turquoise arrows indicate locations where the noise is still 
present, whilst the lower orange arrows show where the process has 
removed the complementary steep dipping signal we would ideally 
preserve. It is also important to emphasize that the application of the 
structure-oriented filter affected image resolution. This conventional 
method has not been as effective as the CNN approach.

Example two – North Sea
In the second example, poor illumination of a single high-contrast 
and undulating event causes localized migration-related noise 
(yellow arrows – Figure 8). The noise swings upwards disrupting 
the events directly above the rugose event, making interpretation 
challenging.

The conventional denoise approach using structure-oriented 
filters mitigates some noise (turquoise arrows – Figure 9), but 
also smears some of the isolated injectites located in the shallow-
er layer (orange arrows – Figure 9).

Figure 7 The application of a conventional denoise 
process. The turquoise arrows indicate the residual 
noise left in the data, whilst the orange arrows 
highlight the attenuation of desirable signal.

Figure 8 North Sea input seismic data. Yellow arrows 
highlight the offending coherent noise.
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Figure 9 The structure-oriented filtering result shows 
residual noise (turquoise arrows), and a smearing 
energy of shallower injectite energy (orange arrows).

Figure 10 The output from the application of the 
convolutional neural network’s model. The blue 
arrows highlight the effectiveness of the process; 
almost all coherent noise has been removed.

Figure 11 The difference of the deep learning 
approach shows the removal of the offending noise. 
Some injectite energy has also been attenuated, but 
not fully removed.
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benefited from an augmentation process. The noise forms have 
a 3D nature. However, each input sample to the neural network 
training was 2D, as was the training process. Despite this, the 
transferability of the trained network to unseen field data shows 
significant potential as the noise forms we were attempting to 
remove had a consistent nature. How generalizable the tool to 
other forms of noise is still to be determined.

Improving the training process in a 3D sense would 
improve the results for noise that is three dimensional. In 
the current training process, the majority of the work was 
collecting an appropriate population of input samples, whereas 
the neural network training took an insignificant time once the 
optimum combination of hyperparameters was established. To 
extend the training to 3D would require considerably more 
effort. The network would become larger, and the tuning of 
the hyperparameters would be far more convoluted. Whilst this 
would be a more memory and compute intensive process, the 
trained network should be able to differentiate noise and signal 
more effectively.

It is also worth noting that we have focused on the effec-
tiveness of the CNN to remove noise in post-stack images. 
The extension of the approach to the pre- or sub-stack image 
domain data, for attribute analysis, still needs to be confirmed. 
Empirical evidence from our existing tests suggests that an 
application to pre-stack data will also assist amplitude-related 
attribute generation and analysis.

Conclusions
We have demonstrated a deep learning approach for attenuating 
migration noise from seismic images. Historically, removing 
this type of noise from seismic data has been challenging, as it 
shares many characteristics with the signal that we would like 
to preserve. We have trained a convolutional neural network to 
differentiate the noise from geological structures.

The application of the trained model to two field data sets 
demonstrates the potential of the solution for successfully 
attenuating migration noise without compromising the reso-
lution or structural integrity of the seismic image ― we see 
improvements in both structure and amplitude fidelity of the 
seismic image.
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