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Data mining and machine learning for porosity, 
saturation, and shear velocity prediction: recent 
experience and results
Roberto Ruiz1*, Anna Roubickova2, Cyrille Reiser1 and Neelofer Banglawala2 explore the 
potential of mining an extensive petrophysics and rock physics well database in the 
Norwegian Sea through advanced machine learning algorithms for estimation of reservoir 
elastic properties, and what it could mean for the optimization of petrophysical and rock 
physics workflows.

Introduction
Building an accurate model of the subsurface is of great impor-
tance for the oil and gas industry. The more precise a model is, the 
lower the risk in exploration for hydrocarbons will be. Companies 
often leverage a wealth of existing tools and workflows to support 
this. However, they all rely upon the same fundamental measure-
ments and data sets, for instance well log data.

Well logs are physical measurements collected from drilled 
boreholes and can provide a very accurate 1D view of the sub-
surface. As robust as they are, once this raw data is collected, it 
must be processed by specialists (a petrophysicist, and/or a rock 
physicist) into a set of conditioned logs containing a detailed 
description of the mineralogy, porosity, and fluid saturation 
information as well as elastic logs, compressional wave velocity 
or Vp, shear wave velocity or Vs, and density or RHOB. This 
well data and its interpretation can be later integrated with seis-
mic data in Amplitude Versus Offset (AVO) and Quantitative 
Interpretation (QI) analyses to improve the understanding of 
identified reservoirs and prospects, or for exploration in frontier 
areas.

Deriving this set of conditioned elastic logs, fluid and mineral 
interpretation is a lengthy process, which can take more than one 
week depending on the geological complexity. Any opportunity 
to optimize this workflow and integrate regional knowledge is 
highly valuable. This is where machine learning (ML) can help. 
The petrophysical/rock physics workflow at its core is a pattern 
recognition and prediction exercise, which can be posed as an 
ML problem where there is an input set of curves (raw logs) and 
an output set of curves (mineralogy, porosity, fluid saturation, 
conditioned elastic logs).

The implementation of ML techniques in the industry for well 
log prediction is not new. Bhatt and Helle (1999), implemented 
neural networks for the prediction of porosity, permeability, and 
Total Organic Content (TOC) from well logs. Jiang et al. (2020), 
explored the use of support vector regression (SVR), random 
forest (RF), and the multilayer perceptron (MLP) for addressing 
the scale mismatch between seismic and geological layers when 
predicting porosity logs, whereas Grana et al. (2020), looked 
at using ML for facies classification. This study investigates 
whether data mining of existing petrophysical and rock physics 

Figure 1 Distribution of 141 exploratory wells used 
in this study in relation to oil fields (green), gas fields 
(red) and PGS 3D seismic data in the Norwegian Sea. 
An additional 190 wildcat wells are available in the 
region. At one week per well it would take more than 
three years of petrophysicist’s work to condition all 
wells in the area.
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only predict where the full suite of input logs is present. Missing 
measurements at a particular depth is a well-known problem 
when working with well logs. Sometimes issues arise with the 
logging tool and a particular log cannot be acquired over a certain 
interval, and NN can neither train nor predict from an incomplete 
set of inputs, which significantly reduces the amount of data we 
can work with. On the other hand, a missing measurement of 
an important feature may negatively impact the accuracy of the 
prediction.

Both NN and BT rely on a loss function, a measure that 
expresses how close the predicted target is to the ground truth. 
The most used measure is the Mean Squared Error (MSE), which 
calculates the average square of differences between the true and 
predicted values across the test or validation set. This provides a 
good idea of the fit on the level of individual observations, i.e., 
the depth steps recorded throughout each well. As predictions are 
realized from individual observations, MSE was chosen as the 
measure to optimize all the models in the work.

A log of a property through a well is more than a collection of 
values. There are also trends and changes of direction to consider, 
which the MSE cannot capture. To overcome this issue, two 
additional measures were implemented: predictability (PEP) and 
goodness of fit (R2).

The predictability score (Silva et al., 2015; White, 1997) 
measures how much better a set of predictions is compared to 
predicting a constant 0 for the whole set. A model that precisely 
predicts the true values scores 1, which is the best possible 
score.

The R2 score (Kramer, 2005) is a similar concept, but it meas-
ures how much better the predictions are compared to a constant 
expected value, i.e., the average target value for the given set. A 
model predicting the expected value would have R2=0, while the 
best score is 1. Intuitively, R2 can be interpreted as the proportion 
of variance of the target variable explained by the input features.

All three measures provide complementary information – 
MSE helps to assess the general accuracy of the models, while 
PEP and R2 help to understand the overall fit of the predictions.

Figure 2 summarizes the main workflow applied for the pre-
diction of each target property in this study. LAS files from 141 
wells were loaded as Pandas data frames in a Jupyter notebook. 
This makes it easier to prepare and feed our models. Given the 
high quality of the data only a quick clean-up was performed – 
mainly removal of rows where the target property is not present, 
and validation of unit consistency across all wells for each 
curve. Then features were selected. Feature selection is a pivotal 
point in ML and refers to the choice of properties presented to 
the model to derive the target property from. We performed a 

libraries using ML provides results that are as high quality as 
those produced via conventional (manual) petrophysical and rock 
physics workflows. The work focuses on predicting total porosity, 
hydrocarbon saturation, and Vs, which is often missing in wells 
and expensive to acquire, but crucial in AVO analysis.

We use data mining of a multi-client rock physics library 
(PGS rockAVO) composed of 141 wells, sampling a variety of 
formations and lithologies, ranging from Tertiary to Triassic 
age in the Norwegian Sea (Figure 1). Each of these wells has 
previously undergone a thorough petrophysical evaluation, as 
well as rock physics conditioning. This data set provides an 
extensive and robust range of observations for training and testing 
the prediction algorithms.

The robustness and success of the approach demonstrates the 
potential for integrating existing petrophysical and rock physics 
libraries with ML for the estimation of porosity, hydrocarbon 
saturation and Vs in a short time; once a model is trained, the 
prediction can be performed in seconds. We also show that a 
porosity model trained in the Norwegian Sea, can be adapted well 
in another basin.

Theory and workflow
Two different ML algorithms have been used in this study. Parts 
of the workflow were predicted using a multi-layer perceptron. 
A perceptron is a mathematical abstraction of a single neuron in 
a human brain, which can be chained and combined in a layered 
manner to increase the complexity and predictive power of the 
model. These models are often referred to as Neural Networks 
(NN). The models in this study were implemented using the 
PyTorch library (Paszke et al., 2019), which offers an effective 
level of control over the configuration of the network and each of 
its layers, as well as over the learning parameters.

Tree-based models, such as decision trees, RF and Boosted 
Trees (BT) present an alternative to neural networks. NN 
models will learn to imitate a functional relationship between 
the input and target properties. Tree-based models, on the 
other hand, derive their prediction from the recorded target 
properties of a group of observations that are similar to the 
current sample, where the similarity rules are defined during the 
training process. The work described here uses BT, as these are 
less prone to overfitting the training data than other tree-based 
algorithms. The models were implemented using the XGBoost 
library (Chen and Guestrin, 2016), an open-source software 
library providing a regularizing gradient boosting framework 
for many languages.

One key advantage of the BT algorithm over NN is that it 
handles missing measurements relatively well, whereas NN can 

Figure 2 Generalized workflow for well log prediction 
utilized in the study.



SPECIAL TOPIC: DIGITAL TRANSFORMATION IN GEOSCIENCE

F I R S T  B R E A K  I  V O L U M E  3 9  I  J U L Y  2 0 2 1 7 3

it is possible to model the final PhiT. The volume of minerals, 
fluids saturations and elastic logs are often revisited and updated 
during this final stage, so that all sets of data (measured logs, 
petrophysical interpretation, well reports, fluid analysis test, rock 
physics models, etc.) are consistent, making the estimation of 
total PhiT a complex and extensive exercise.

The PhiT prediction was modelled using the BT algorithm, 
and we studied the impact of different inputs to establish the 
most suitable sets of features, considering both the accuracy of 
the predictions as well as availability of the input features. The 
following sets of inputs were considered:
A.  Base logs - a set of curves like those used by the petrophys-

icist, namely: GR; NPHI; logarithm of deep resistivity; raw 
elastic logs; unconditioned RHOB or RHOB_RAW; uncon-
ditioned Vp or Vp_RAW and unconditioned Vs or Vs_RAW. 
Ramm and Bjørlykke (1994) identified a positive correlation 
between burial depth and porosity in the area, therefore the 
true vertical depth below mudline (TVDBML) was also used 
as an input for the model

B.  Processed logs - conditioned elastic logs, plus GR, NPHI, 
logarithm of deep resistivity and TVDBML

C.  Minimal logs - only conditioned Vp, RHOB and TVDBML

Figure 3 shows the results of all three models for blind test well, 
6507/11-7 in the Norwegian Sea. The match between the black 
(true PhiT) and the red curve (base logs model) is very good, the 
model seems to be unaffected by the long missing section of the 
NPHI, raw RHOB and raw Vs in the shallow-to mid-section of 
the well. The fitting is excellent for the blue curve (predicted from 
processed logs) as well as for the green curve (porosity predicted 
from minimal conditioned set of curves).

The different metrics used to estimate the accuracy of each 
of the models for this well are shown in Table 1. The MSE is 

manual filter and removed obviously redundant properties. 
Then the BT model applied its built-in feature selection as this 
is embedded in its training process. This is a process similar to 
what a petrophysicist would perform, who albeit having more 
than 12 curves available, usually concentrates in a few key 
logs such as: gamma ray (GR), neutron porosity (NPHI), deep 
resistivity, RHOB, Vp and Vs.

The data was randomly split on a well-by-well basis, 113 
wells (80%) were used for training and 28 wells (20%) were kept 
aside for blind testing of the model. This ensured that the ML 
algorithm is predicting on wells that it has never seen, allowing us 
to estimate the accuracy of the predictions and the generalization 
power of the model.

To ensure the optimal behaviour of the models, a hyper-para-
metrization search was performed. Hyper-parametrization refers 
to setting up the parameters of the model and the training process 
that remain unchanged during the training, such as maximum 
allowed tree depth or smallest number of observations required 
for a node to split. This is a lengthy process, as the algorithm 
must identify the best combination of model parameters within 
predefined ranges of the parameters’ values. We implemented this 
search using the Hyperopt (Bergstra et al. 2015) library and the 
optimal parameters were applied in the final model that predicts 
the target well log.

Porosity prediction results
Total porosity (PhiT) is the proportion of fluid-filled spaces in 
the rock, and it can be given as a percentage or fraction of the 
total space; we use the latter definition. As porosity is a property 
that cannot be measured directly in the inside of the wellbore, the 
porosity log must be computed.

In the Norwegian Sea well database, the PhiT log is calcu-
lated from bulk density using the mass balance equation. The 
process requires a mineralogic and fluid saturation interpretation. 
The interpretation enables an initial estimate of PhiT using 
empirical trends (Wyllie et al., 1956; Raymer et al., 1980). A rock 
physicist then takes this initial petrophysical interpretation and 
PhiT estimation and establishes a relationship between observed 
velocities or impedances to PhiT, fluid saturations, diagenetic 
cement, grain sorting and size, mineralogy, etc., through rock 
physics models in a process known as rock physics diagnostics 
or RPD (Dvorkin and Nur, 1996). Once the rock physics model 
and parameters are calibrated to the observed elastic response, 

Porosity Model MSE R2 PEP

Base logs 0.00034 0.95213 0.99416

Processed logs 0.00016 0.97723 0.99722

Minimal logs 0.00011 0.98475 0.99814

Table 1 PhiT prediction accuracy estimation for each model in well 6507/11-7. 
Different metrics were used to estimate the error fitting, although only MSE was 
used as loss function for the ML algorithms. 

Figure 3 PhiT (fraction) prediction using XGBoost 
regression algorithm in the Norwegian Sea area with 
three different suites of logs as inputs. The base 
model deals with significant sections of missing NPHI, 
RHOB_RAW and Vs_RAW (shown on the leftmost 
track) but delivers a robust prediction nevertheless. 
The petrophysical interpretation is presented for 
reference although volumetrics are not used as input 
in the prediction.
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Similarly to the previous experiment, the minimal logs model 
outperforms the other two.

Hydrocarbon saturation prediction results
Hydrocarbon saturation is a key reservoir property. When 
encountered in a wellbore, fluid saturation can define whether 
a well, a prospect, a field or a region is an economic success. 
Therefore, it is critical to have a representative estimation 
of hydrocarbons in a well. The petrophysicist will focus on 
a particular reservoir, then look at a series of logs and fluids 
reports, to choose the most appropriate equation to estimate 
water saturation.

The most used equations in the oil industry are Archie 
(1942), Simandoux (1963), and Poupon and Leveaux (1971). 
Each depend on a series of logs (like porosity or shale mineral 
fraction) and parameters that are carefully derived and calibrated 
for a specific reservoir. The hydrocarbon saturation log in the 141 
wells in the Norwegian Sea has been estimated primarily using 
the Archie equation. However, no discrimination in the 80-20% 
well-by-well split has been performed.

The saturation prediction has been performed using three 
different methodologies:
1.  HCS1 – using BT to directly predict the saturation of hydro-

carbons
2.  HCS2 – using a BT classifier to identify whether there are 

hydrocarbons at a particular depth (setting up a true/false 
Boolean flag), then, using a different BT model, an estima-
tion of the hydrocarbon saturation where the hydrocarbon 
flag was ‘true’

3.  HCS3 – using a NN to classify whether there are hydro-
carbons at a particular depth, then an estimation of the 
hydrocarbon content using the BT model

All models were trained using the same set of input logs, namely: 
TVDBML; GR; NPHI; Vp_RAW; RHOB_RAW and a logarithm 
of deep resistivity. Figure 5 illustrates the hydrocarbon saturation 
prediction from each of the models in well 6507/3-10. There are 
a few missing input logs at the top and bottom of the well, but in 
the main reservoir section, all input logs are available. All three 
approaches agree with the true hydrocarbon saturation (calculated 
using the Archie equation), although models HCS1 (red curve) 
and HCS3 (green curve) show more residual saturations of 
hydrocarbon than HCS2 (blue curve). This may be accurate, 

very low, but note that this is a squared error so the processed 
and minimal logs models deviate on average by 1% from the 
true PhiT, while the average error of the base logs is under 2%. 
Both PEP and R2 are very close to 1 for all models, with R2 more 
effectively capturing the differences in the models’ predictions.

Table 1 also shows that the minimal logs model is the 
best performer for this well. This might be due to gaps in the 
RHOB_RAW log that are filled in the conditioned RHOB log 
by modelling a synthetic density curve from Vp using the rock 
physics model calibrated during the RPD phase. However, 
the excellent model fitting where the RHOB log has not been 
conditioned, indicates that Vp and RHOB logs might carry most 
of the necessary information for predicting PhiT in the area. More 
importantly, the results indicate that the model does not require 
either a mineralogical interpretation, or a fluid saturation estima-
tion, to derive an accurate PhiT for the entire well length, which 
is a requirement for any conventional methods of estimating this 
reservoir property.

Geographic transferability test of porosity 
prediction models
Encouraged by the results, we tested the suitability of these 
Norwegian Sea porosity prediction models for a well located 
in a different basin. Figure 4 shows the performance of the 
models on well 7122/4-1 from the Barents Sea. Although the 
geological history of this basin is very different, base and 
minimal log models performed well. This indicates that a ML 
model trained in one region could be used to estimate an initial 
PhiT in a new well, from a new area directly from raw logs. A 
specialist would need to perform a more time-consuming and 
robust calibration.

Table 2 shows that the overall fit for base and minimal is 
slightly worse than the Norwegian Sea, though errors remain low. 

Porosity Model MSE R2 PEP

Base logs 0.00097 0.63504 0.9263

Processed logs 0.00706 -1.65277 0.46439

Minimal logs 0.0005 0.81327 0.96229

Table 2 PhiT prediction metrics for well 7122/4-1 (Barents Sea), although the model 
has never seen information from this region, the prediction models show a good 
performance.

Figure 4 PhiT (fraction) predictions result in a blind 
well from the Barents Sea. The processed logs model 
seems to be affected by the conditioning of the logs, 
while the minimal logs model is the most robust, 
suggesting that the additional inputs included in 
the base logs introduce noise rather than useful 
information.
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(1992) and Krief et al. (1990). Both approaches establish rela-
tionships between Vp, porosity, and a reference fluid, to the Vs 
log. A robust petrophysical interpretation is required prior to the 
application of these approaches, on top of a careful calibration of 
the main parameters in the equations, to produce a reliable final 
synthetic Vs log.

Vs estimation benefits an approach like porosity prediction  
using BT models:
A.  Base logs – a model with GR, NPHI, logarithm of deep 

resistivity, RHOB_RAW, Vp_RAW and TVDBML
B.  Processed logs – model trained using GR, NPHI, logarithm 

of deep resistivity, conditioned Vp, conditioned RHOB and 
TVDBML

C.  Minimal logs – a model that only considers conditioned Vp, 
RHOB and TVDBML

Results of models from well 6406/12-2 are illustrated in Figure 6. 
The first track shows a long section of missing NPHI and 
Vs_RAW log in the shallow section, but not the conditioned Vs. 
This indicates that the true Vs log is composed of a measured 
Vs log and a synthetic, where the flag missing VS_Raw, is true. 
The synthetic section of the target log has been predicted by 
petrophysicists using the Greenberg and Castagna predictor with 
a modified shale coefficient.

The base logs model (red curve in Figure 6) produces a 
reasonable prediction despite lacking significant information 
from the NPHI log. This implies the model could be used as a 
tool to estimate an initial Vs that might be used in early AVO 
analysis, while the final Vs curve is validated by specialists. The 

as it is known that petrophysicists clip the residual saturation of 
hydrocarbon to zero to simplify models.

The error metrics are listed in Table 3. The three models have 
nearly identical MSE as most of the target values are 0 (which 
the models frequently correctly identify), and this dominates the 
error evaluation.

Shear-wave velocity log prediction results
Shear waves are acoustic waves in which particles oscillate 
perpendicular to the direction the wave propagates. The shear 
wave carries critical information that, in conjunction with Vp and 
RHOB logs, provides the framework for performing advanced 
QI studies using seismic data via AVO analysis (Castagna et 
al. 1993).

Vs logs are acquired using a full waveform acoustic tool, 
which generates compressional, shear and Stoneley waves, 
making the acquisition of this type of log expensive and sparse 
in old wells. To overcome this, several empirical equations have 
been proposed to estimate a synthetic Vs log. The common Vs 
predictors in the oil and gas industry are Greenberg and Castagna 

Figure 5 Blind well hydrocarbon saturation (fraction) 
prediction using three different approaches. All 
models produce a relatively good prediction, HCS2 is 
particularly good at handling saturations clipped to 
zero unlike HCS1 (BT regression only) and HCS3 (NN 
classifier plus BT regression). All models have been 
trained using a standard set of curves without any 
conditioning or processing applied.

Figure 6 Vs (m/s) prediction using BT algorithm in the 
Norwegian Sea area with three different suites of logs 
as inputs. The gap in the true Vs log upper section has 
been filled by a specialist using Greenberg-Castagna 
relationship with calibrated coefficient for the shale, 
the bottom half of the true Vs is measured. The three 
BT models predict quite well in both zones of the true 
Vs log (acquired and synthetic). The petrophysical 
interpretation is presented for reference although 
volumetrics are not used as input in the prediction.

SHC Model MSE R2 PEP

HCS1 0.001671 0.822064 0.830401

HCS2 0.001504 0.839939 0.847438

HCS3 0.001604 0.829283 0.837282

Table 3 Hydrocarbon saturation error estimation for different models in well 6507/3-
10. MSE was used as loss function for the ML algorithms.
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other two models, the processed logs (blue curve) and minimal 
logs model (green curve) also produce accurate predictions. 
Table 4 shows the overall fitting between the predictions and 
the true Vs.

Conclusions
Results presented in this paper demonstrate the potential of 
using ML algorithms to accurately predict porosity, hydrocarbon 
saturation and Vs from measured well logs, aided by an extensive 
petrophysical and rock physics atlas in the Norwegian Sea. 
Unlike traditional empirical approaches, this method does not 
require inputs such as mineralogy or fluid saturation, to perform 
a robust prediction.

Prior works attempting similar tasks using analogous 
techniques (e.g., Hall, 2016; Bestagini et al., 2017) work on 
much smaller data sets as ML models are hard to scale in the 
geophysical context due to the noise inherent to large data sets, 
which may prevent models from discovering true relationships 
between different features. However, this work demonstrates 
that some petrophysical properties are consistent across numer-
ous wells, and even across different geographic locations, 
making ML algorithms a very promising option for estimating 
properties accurately and efficiently, as well as an extremely 
useful tool for optimizing current petrophysical and rock 
physics workflows, along with reducing the overall turnaround. 
As an example, we observed that it took under 25 minutes for 
a standard workstation to train our three different porosity 
models, and only a fraction of a second to predict porosity from 
these three models on a new well.
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