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ABSTRACT

In marine seismic acquisition, the free surface generates seis-
mic events in our recorded data that are often categorized as
noise because these events do not contain independent informa-
tion about the subsurface geology. Ghost events are considered
as such noise because these events are generated when the en-
ergy generated by the seismic source, as well as any upgoing
wavefield propagating upward from the subsurface, is reflected
downward by the free surface. As a result, complex interference
patterns between up- and downgoing wavefields are present in
the recorded data, affecting the spectral bandwidth of the re-
corded data negatively. The interpretability of the data is then
compromised, and hence it is desirable to remove the ghost
events from the data. Rayleigh’s reciprocity theorem is used
to derive the relevant equations for wavefield decomposition
for multisensor and single-sensor data, for depth-varying and

depth-independent recordings from marine seismic experiments
using a single-source or dual-source configuration. A compar-
ison is made between the results obtained for a 2D synthetic
example designed to highlight the strengths and weaknesses
of the various acquisition configurations. It is demonstrated that,
using the proposed wavefield decomposition method, multisen-
sor data (measurements of pressure and particle velocity
components, or multidepth pressure measurements) allow for
optimal wavefield decomposition as independent measurements
are used to eliminate the interference patterns caused by the free
surface. Single-sensor data using constant-depth recordings are
found to be incapable of producing satisfactory results in the
presence of noise. Single-sensor data using a configuration with
depth-varying measurements are able to deliver better results
than when constant-depth recordings are used, but the results
obtained are not of the same quality when multisensor data
are used.

INTRODUCTION

In recent years, new acquisition systems have been introduced to
marine seismic acquisition to increase the bandwidth and resolution
of the recorded data. These methods all aim to remove the so-called
ghost reflections that have been generated by the free surface. The
free surface reflects the seismic energy back into the water layer
such that any seismic event is recorded twice: first as an upgoing
wavefield that has been reflected by the subsurface and secondly as
a ghost, which is the downgoing field that has been reflected by the
free surface. This receiver ghost has the opposite polarity from the
upgoing wavefield, causing peaks and notches in the amplitude
spectrum of the recorded data, due to the interference of the up-
and downgoing wavefields. Similarly, the seismic energy omitted

by the seismic sources consists of two constituents: one component
propagates directly downward into the subsurface, and the second
component, often referred to as the “source ghost,” first propagates
upward to the free surface before it is reflected off the free surface
again to propagate as a downgoing wavefield. As a result of the
source and receiver ghosts, the temporal resolution of the data is
reduced.
In multisensor acquisition, this problem of receiver ghost events

is overcome through the use of streamers where hydrophones and
velocity sensors are collocated at the same depth. Because the
velocity sensors are directional, the downgoing velocity wavefield,
being phase reversed by reflection at the free surface is measured as
having the same polarity to the upgoing velocity wavefield. As a
result, the receiver ghost notches for the pressure and particle
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velocity sensors are exactly interleaved in the frequency domain.
When signals from the two sensors are properly combined, the
ghost reflection cancels and the bandwidth of the recorded data
is significantly increased (Pharez et al., 2008; Tenghamn and
Dhelie, 2009).
Another approach is to record the pressure wavefield at two dif-

ferent constant depths (Moldoveanu et al., 2007). As the interfer-
ence patterns of the events are different for the two independent
recordings, the measured wavefields can be combined to eliminate
the receiver ghosts from the recorded data.
A third approach to address the receiver ghosts is to measure the

data using a single pressure sensor only, but to measure the data at
variable depths (Soubaras and Dowle, 2010). Because the interfer-
ence patterns are directly dependent on the depth where the mea-
surements are taken, the ghost notches will have a more diverse
character, which can reduce the impact of the notches in the seismic
spectrum of the recorded data.
To address the source ghosts, an acquisition system can be

designed such that two (or more) independent seismic experiments
are conducted in which the depths of the seismic sources for the
independent experiments are chosen such that the recorded data
can be combined to eliminate the interference effects caused by
the free surface (Egan et al., 2007; Parkes and Hegna, 2011).
A key component in the delivery of increased bandwidth and

resolution is the ability to decompose the recorded into up- and
downgoing constituents, thereby removing the source and receiver
ghost events from the measured data. In this paper, the fundamen-
tals of acoustic wavefield decomposition are revisited. We choose
the reciprocity theorem as the central theme because it constitutes
the fundaments of the seismic wave theory and it allows for a con-
sistent and hierarchical description of seismic wavefield decompo-
sition. We will derive and analyze the equations for wavefield
decomposition for multisensor and single-sensor data, for depth-
varying and depth-independent recordings from experiments using
a single- or dual-source configuration.
We will concentrate on the seismic problem, in which the mea-

surement is a sampled version of the acoustic wavefield. As
such, the derivations are based on the acoustic wave equations
and the constitutive parameters are the mass density and the
compressibility.
First, we discuss the mathematical tools we use in the analysis of

the acoustic wavefield, and we briefly discuss the partial differential
equations that govern the dynamical state of matter on a macro-
scopic scale and hence the acoustic wave propagation in the med-
ium. We will also state the expressions for the acoustic wavefield
that is causally related to the action of sources of bounded extent in
an unbounded homogeneous medium.
Next, we will introduce the concepts of acoustic states, defined in

a time-invariant, bounded domain. They encompass the set of
circumstances that completely describes the wave motion in the do-
main of consideration. We distinguish three constitutive members of
the set: the material state, which relates to the parameter distribu-
tion; the source state, which corresponds to the source distribution;
and the field state, which represents the induced wavefield quanti-
ties. Then, we will discuss the reciprocity theorem. This theorem
relates two nonidentical acoustic states that can occur in the domain
of interest. It directly relates the spatial divergence of the wavefield
interaction quantity to the differences between the material and the
source distributions of the two states. In the Laplace-transform

domain, we present two forms of this theorem: the field reciprocity
theorem and the power reciprocity theorem. Both forms of the
reciprocity theorem are important for a consistent decomposition
analysis.
We will formalize wavefield decomposition with the aid of the

reciprocity theorems. We consider a homogeneous subdomain of
infinite lateral extent, bounded vertically by two interfaces. The
wavefield decomposition is realized in a horizontal plane of this
region. With the aid of the field reciprocity theorem and the causal
Green’s function, we show that the downgoing wavefield is asso-
ciated with an integral contribution of time-retarded surface-source
distributions over the upper interface. Using the power reciprocity
theorem and the anticausal Green’s function, we obtain an integral
expression for the upgoing wavefield in terms of time-advanced sur-
face-source distributions over the upper interface. The fact that the
down- and upgoing parts are related to the upper interface makes the
decomposition feasible in surface seismics. The theoretical devel-
opment presented in this paper finds its origin in Fokkema and van
den Berg (1993).

MATHEMATICAL FRAMEWORK

The seismic quantities that describe the acoustic waves depend
on position and on time. Their time dependence in the domain in
which the seismic source is acting is impressed by the excitation
mechanism of the source. The subsequent dependence on position
and time is governed by propagation and scattering laws.
To register the position we use a Cartesian reference frame with

three base vectors fi1; i2; i3g that are mutually perpendicularly
oriented and are of unit length each. The property that each base
vector specifies geometrically a length and an orientation makes
it a vectorial quantity, or a vector; notationally, vectors will be re-
presented by bold-face symbols. Let fx1; x2; x3g denote the three
numbers that are needed to specify the position of an observer, then
the vectorial position of the observer x is the linear combination

x ¼ x1i1 þ x2i2 þ x3i3: (1)

The numbers fx1; x2; x3g are denoted as the orthogonal Cartesian
coordinates of the point of observation.
To register the time, we consider an interval T ¼ ft ∈ R; t > t0g,

where t0 is the switching time of the acting sources.
The forward Laplace transformation from the space-time domain

ðx; tÞ to the Laplace domain ðx; sÞ is defined as

ûðx; sÞ ¼
Z
t∈T

exp ð−stÞχTðtÞuðx; tÞdt; (2)

and the corresponding backward Laplace transformation is
defined as

χTðtÞuðx; tÞ ¼
1

2πj

Zs¼þj∞

s¼−j∞

expðstÞûðx; sÞds; (3)

where t is time, j ¼ ffiffiffiffiffiffi
−1

p
is the imaginary unit, and s is a Laplace

frequency parameter. In the Laplace transformation given above
in equations 2 and 3, the Laplace parameter s, the frequency
parameter, is conventionally a purely imaginary number and is
defined as
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s ¼ jω ¼ j2πf; (4)

where ω is the circular frequency and f is the real frequency.
Finally, the characteristic function is given by

χT ¼
8<
:

1 for t ∈ T;
1∕2 for t ∈ ∂T;
0 for t ∈ T 0;

(5)

in which the three subdomains are given by T ¼ ft ∈ R; t > t0g,
∂T ¼ ft ∈ R; t ¼ t0g, and T 0 ¼ ft ∈ R; t < t0g, respectively; ∂T
is the boundary of T; whereas T 0 is the complement of T ∪ ∂T.
As will be discussed later, it may be beneficial to consider a

“complex” Laplace frequency parameter s that is a complex variable
with real and imaginary parts; i.e.,

s ¼ jωþ ε ¼ j2πf þ ε; (6)

where ε is an additional real part of the complex Laplace frequency
parameter s.
It is common in seismic problems to assign the x3-coordinate to

the vertical depth position. Then, x1 and x2 represent the horizontal
positions. Let us consider the scalar wavefield quantity u ¼ uðx; tÞ
and let û ¼ ûðx; sÞ denote its time Laplace transform. The spatial
Fourier transform pair fF;F−1g of function û is then defined as

Ffûðx1; x2; x3; sÞg ¼ ūðjsα1; jsα2; x3; sÞ

¼
Z

ðx1;x2Þ∈R3

expðjsα1x1

þ jsα2x2Þûðx1; x2; x3ÞdA; (7)

1

ð2πÞ2
Z

ðsα1;sα2Þ∈R3

expð−jsα1x1;−jsα2x2Þūðjsα1;jsα2;x3;sÞdA

¼ ûðx1;x2;x3;sÞ¼F−1fūðjsα1;jsα2;x3;sÞg; (8)

in which fα1; α2g are the horizontal components of the angular-
slowness vector α, defined in terms of its Cartesian components

α ¼ α1i1 þ α2i2 þ α3i3; (9)

where α may be complex but sα is always taken to be real.
The acoustic wave equations are representative for the action of

mechanical forces and the influence of inertia during the acoustic
wave motion as well as of the deformation that take place during
this wave motion. The acoustic wave motion is a dynamical state of
matter that is superimposed on a static equilibrium state. In this re-
spect, we shall only retain the first-order terms to describe the
acoustic wave motion.
The basic acoustic wave equations in their low-velocity approx-

imation (Fokkema and van den Berg, 1993) are given by

∂kpþ ρ∂tvk ¼ fk; (10)

∂kvk þ κ∂tp ¼ q; (11)

in which p is the acoustic pressure in (Pa), fk is the volume source
density of volume force ðN∕m3Þ, vk represents the particle velocity
ðm∕sÞ; q volume source density of injection rate ðs−1Þ, ∂t denotes
differentiation with respect to time, and ∂k represents differentiation
with respect to spatial coordinates xk, k ¼ 1; 2; 3. Note that the sum-
mation convention for repeated subscripts applies; in particu-
lar ∂kvk ¼ ∂1v1 þ ∂2v2 þ ∂3v3:
When the constitutive parameters change continuously with

position, the acoustic pressure and the particle velocity are continu-
ously differentiable functions of position and satisfy the differential
equations. In practice, of course it often occurs that fluids with dif-
ferent material parameters are in contact along interfaces. To inter-
relate the acoustic wavefield quantities at either side of an interface
∂D, with normal vector vk, the pressure p and the particle velocity
in the direction perpendicular across this interface vkvk are con-
tinuous.
In the Laplace-transform domain, the acoustic wave equations

have the form

∂kp̂þ sρv̂k ¼ f̂k; (12)

∂kv̂k þ sκp̂ ¼ q̂; (13)

and the boundary conditions are such that pressure p̂ and the par-
ticle velocity in the direction perpendicular across interface S, vkv̂k
are continuous across S.

Reciprocity theorems

Next, we discuss the reciprocity theorems. These theorems con-
stitute the fundament of the seismic wave theory. In the reciprocity
theorems, we consider a time-invariant, bounded, domain D in
space in which two nonidentical acoustic states can occur. The
two states will be distinguished by the superscripts A and B, respec-
tively. Neither the source distributions of the acoustic wavefields in
the two states nor the fluids present in the two states need to be the
same. The boundary surface ofD is denoted by ∂D, the normal vec-
tor vk on ∂D is directed away from D. The complement of D ∪ ∂D
in R3 is denoted by D 0 (see Figure 1). We characterize the acoustic
properties of the fluids by the volume density of mass ρ ¼ ρðxÞ and
the compressibility κ ¼ κðxÞ:
We start with the basic acoustic wavefield equations in the s-do-

main, as discussed in equations 12 and 13. State A is characterized
by the acoustic wavefield fp̂A; v̂Ak g the constitutive parameters
fρA; κAg and the source distributions fq̂A; f̂Ak g. Similarly, state B
is characterized by the acoustic wavefield fp̂B; v̂Bk g the constitutive
parameters fρB; κBg and the source distributions fq̂B; f̂Bk g (see Ta-
ble 1). The acoustic wavefield equations pertaining to state A and
state B are then

∂kp̂A þ sρAv̂Ak ¼ f̂Ak ; (14)

∂kv̂Ak þ sκAp̂A ¼ q̂A; (15)

and

∂kp̂B þ sρBv̂Bk ¼ f̂Bk ; (16)

∂kv̂Bk þ sκBp̂B ¼ q̂B; (17)

Acoustic wavefield decomposition WA43
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respectively. In the s-domain field reciprocity relation, the interac-
tion quantity between the two states is

∂kðp̂Av̂Bk − p̂Bv̂Ak Þ ¼ v̂Bk ∂kp̂A þ p̂A∂kv̂Bk − v̂Ak ∂kp̂B

− p̂B∂kv̂Ak : (18)

Using equations 14–17, and after integration, the global form of the
field reciprocity theorem is arrived at as

Z
x∈∂D

ðp̂Av̂Bk − p̂Bv̂Ak ÞkdA

¼
Z
x∈D

½sðρB − ρAÞv̂Ak v̂Bk − sðκB − κAÞp̂Ap̂B�dV

þ
Z
x∈D

ðf̂Ak v̂Bk þ q̂Bp̂A − f̂Bk v̂Ak − q̂Ap̂BÞdV: (19)

In the s-domain power reciprocity theorem, we again consider two
states A and B in a bounded domain. State A is again characterized
by the acoustic wavefield fp̂A; v̂Ak g, the constitutive parameters
fρA; κAg, and the source distributions fq̂A; f̂Ak g. State B is now
characterized by the anticausal acoustic wavefield fp̂B; v̂Bk g ¼
fp̂B; v̂Bk gðx;−sÞ, the constitutive parameters fρB; κBg, and the
source distributions fq̂B; f̂Bk g ¼ fq̂B; f̂Bk gðx;−sÞ, recognized as
the anticausal counterpart (see Table 2). The acoustic wavefield
equations pertaining to state A and state B are then

∂kp̂A þ sρAv̂Ak ¼ f̂Ak ; (20)

∂kv̂Ak þ sκAp̂A ¼ q̂A; (21)

and

∂kp̂B − sρBv̂Bk ¼ f̂Bk ; (22)

∂kv̂Bk − sκBp̂B ¼ q̂B; (23)

respectively. In the s-domain power reciprocity relation, the inter-
action quantity between the two states is

∂kðp̂Av̂Bk þ p̂Bv̂Ak Þ ¼ v̂Bk ∂kp̂A þ p̂A∂kv̂Bk þ v̂Ak ∂kp̂B

þ p̂B∂kv̂Ak : (24)

Using equations 20–23, and after integration, the global form of
the power reciprocity theorem is arrived at as

Z
x∈∂D

ðp̂Av̂Bk þ p̂Bv̂Ak ÞkdA

¼
Z
x∈D

½sðρB − ρAÞv̂Ak v̂Bk þ sðκB − κAÞp̂Ap̂B�dV

þ
Z
x∈D

ðf̂Ak v̂Bk þ q̂Bp̂A þ f̂Bk v̂Ak þ q̂Ap̂BÞdV: (25)

Wavefield decomposition

Next, it will be demonstrated that in a horizontal plane in a homo-
geneous subdomain, the acoustic wavefield may be written as a
superposition of the down- and upgoing wave constituents. In
the analysis, the s-domain field and power reciprocity theorem will
be used.
We consider two interfaces ∂D0 and ∂D1. We assume that the

medium in the domain D between these interfaces is homogeneous
with constitutive parameters ρ and κ. We further assume that the
interface ∂D0 and ∂D1 do not overlap; i.e., xð1Þ3;min > xð0Þ3;max, where
xð0Þ3;max denotes the maximum value of x3 on the interface ∂D0,
whereas xð1Þ3;min denotes the minimum value of x3 on the interface

Figure 1. Configuration for the application of the reciprocity the-
orem.

Table 1. States in the field reciprocity theorem.

State A State B

Field state fp̂A; v̂Ak gðx; sÞ fp̂B; v̂Bk gðx; sÞ
Material state fρA; kAgðxÞ fρB; kBgðxÞ
Source state fq̂A; f̂Ak gðx; sÞ fq̂B; f̂Bk gðx; sÞ
Domain D (see Figure 1)

Table 2. States in the power reciprocity theorem.

State A State B

Field state fp̂A; v̂Ak gðx; sÞ fp̂B; v̂Bk gðx;−sÞ
Material state fρA; kAgðxÞ fρB; kBgðxÞ
Source state fq̂A; f̂Ak gðx; sÞ fq̂B; f̂Bk gðx;−sÞ
Domain D (see Figure 1)

WA44 van Borselen et al.

D
ow

nl
oa

de
d 

09
/1

8/
15

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://library.seg.org/action/showImage?doi=10.1190/geo2012-0332.1&iName=master.img-000.jpg&w=133&h=200


∂D1. This means that there always exists a horizontal plane at xR3
such that xð0Þ3;max < xR3 < xð1Þ3;min (see Figure 2).
We apply the s-domain field reciprocity theorem to the domainD

inside the interfaces ∂D0 and ∂D1 (see Figure 2). The normal vk to
the interfaces is directed toward the domainD. State A is taken to be
the actual wavefield that is generated by sources confined to a
bounded domain in D 0. The wavefield of state B is taken as the
volume-injection Green’s state, generated by a point source of
volume injection (see Table 3).
If we now define the Green’s states to be as

fp̂q; v̂qkgðxjxR; sÞ ¼ q̂BðsÞfĜq;−Γ̂q
kgðxRjx; sÞ; (26)

then substitution of states A and B into equation 19 leads to

p̂ðxR; sÞ ¼
Z

x∈ð∂D0∪∂D1Þ

½ĜqðxRjx; sÞv̂kðx; sÞ

þ Γ̂q
kðxRjx; sÞp̂ðx; sÞ�vkdA;

when xR ∈ D;

(27)

in which

ĜqðxRjx; sÞ ¼ sρĜðxR − x; sÞ; (28)

Γ̂q
kðxRjx; sÞ ¼ −∂Rk ĜðxR − x; sÞ; (29)

and the Green’s function in the s-domain is defined as

Ĝðx; sÞ ¼
exp

�
− s

c jxj
�

4πjxj ; with c ¼ ðκρÞ−1
2: (30)

In the derivation of equation 27, it has been taken into account
that contributions of the bounding surfaces at ðx21 þ x22Þ → ∞ van-
ish, because the integrand of equation 27 is of the order
½ðx21 þ x22Þ−1� as ðx21 þ x22Þ → ∞. The latter asymptotic behavior
follows directly from the Green’s function representation of equa-
tion 30 and its far-field approximations (Fokkema and van den

Berg, 1993, Chapter 4). It is remarked that the wavefield at xR con-
sists of contributions of surfaces sources located on interfaces ∂D0

and ∂D1.
It is most convenient to carry the decomposition of the wavefield

in the domain of the Fourier transform with respect to the horizontal
coordinates. We therefore use the Fourier representation of the
Green’s function, given by

Ḡðjsα1; jsα2; x3; sÞ ¼
expð−sΓjx3jÞ

2sΓ
; (31)

where

Γ ¼
�
1

c2
þ α21 þ α22

�1
2

; ReðΓÞ > 0: (32)

Transforming equation 27 to the spatial Fourier domain, using the
representations of equations 28, 29, and 31, noting that jxR3 − x3j ¼
xR3 − x3 when x ∈ ∂D0 and jxR3 − x3j ¼ x3 − xR3 when x ∈ ∂D1, and
interchanging the order of integrations, we arrive at the decomposi-
tion into the down- and upgoing wavefields:

p̂ðx1; x2; xR3 ; sÞ ¼ p̂downðx1; x2; xR3 ; sÞ þ p̂upðx1; x2; xR3 ; sÞ;
(33)

where the spectral counterparts are given by

p̄downðjsα1; jsα2; xR3 ; sÞ ¼ P̄downðjsα1; jsα2; sÞ expð−sΓxR3 Þ;
(34)

p̄upðjsα1; jsα2; xR3 ; sÞ ¼ P̄upðjsα1; jsα2; sÞ expðsΓxR3 Þ:
(35)

The amplitude P̄down of the downgoing wavefield consists of con-
tributions of surface sources at ∂D0, whereas the amplitude P̄up of
the upgoing wavefield consists of contributions of surface sources at
∂D1. These amplitudes are expressed by

P̄downðjsα1; jsα2; sÞ

¼ 1

2sΓ

Z
x∈∂D0

½v̂kðx; sÞsρ expðjsα1x1 þ jsα2x2 þ sΓx3Þ

þ p̂ðx; sÞ∂k expðjsα1x1 þ jsα2x2 þ sΓx3Þ�vkdA;
(36)

and

Figure 2. A homogeneous subdomain D bounded by the interfaces
∂D0 and ∂D1.

Table 3. States in the field reciprocity theorem.

State A (actual state)
State B (volume-injection

Green’s state)

Field state fp̂; v̂kgðx; sÞ fp̂q; v̂qkgðxjxR; sÞ
Material state fρ; kg fρ; kg
Source state f0; 0g fq̂BðsÞδðx − xRÞ; 0g
Domain D (see Figure 1)
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P̄upðjsα1; jsα2; sÞ

¼ 1

2sΓ

Z
x∈∂D1

½v̂kðx; sÞsρ expðjsα1x1 þ jsα2x2 − sΓx3Þ

þ p̂ðx; sÞ∂k expðjsα1x1 þ jsα2x2 þ sΓx3Þ�vkdA:
(37)

It is remarked that the particle velocity associated with the down-
going wavefield follows directly from equation 34 and wave equa-
tion (equation 13) in a source-free homogeneous medium. The
vertical component of the particle velocity and the acoustic pressure
of the downgoing wavefield are related to each other as

ρv̄down3 ðjsα1; jsα2; xR3 ; sÞ − Γp̄downðjsα1; jsα2; sÞ ¼ 0:

(38)

Similarly, the vertical component of the particle velocity and the
acoustic pressure of the upgoing wavefield are related to each
other as

ρv̄up3 ðjsα1; jsα2; xR3 ; sÞ þ Γp̄upðjsα1; jsα2; sÞ ¼ 0: (39)

The equations derived here show the decomposition in the down-
and upgoing wavefields in a homogeneous subdomain of infinite
extent in the horizontal directions. The downgoing wavefield
p̂downðx1; x2; xR3 ; sÞ is obtained from the integral representation with
surface contributions from ∂D0 only. Similarly, the upgoing wave-
field p̂upðx1; x2; xR3 ; sÞ is obtained from the integral representation
with surface contributions from ∂D1 only.

Multicomponent measurement decomposition from a single arbi-
trarily shaped recording interface

It may be that measurements are only made at a single surface
contribution, either ∂D0 or ∂D1. Hence, it can be advantageous to
derive equations that describe the upgoing wavefield from an inte-
gral representation with surface contributions from ∂D0 only and
the downgoing wavefield from the integral representation with sur-
face contributions from ∂D1 only.
To achieve this, we proceed as follows: We apply the s-domain

power reciprocity theorem to the domain D inside the interfaces
∂D0 and ∂D1 (see Figure 2). State A is taken to be the actual wave-
field that is generated by sources confined to a bounded domain in

D 0. The wavefield of state B is taken as the anticausal wavefield
generated by a point source of volume injection (see Table 4).
Using the Green’s states of equation 26, in which we replace s by

−s, we arrive at

p̂ðxR; sÞ ¼
Z

x∈ð∂D0∪∂D1Þ

½−ĜqðxRjx;−sÞv̂kðx; sÞ

þ Γ̂q
kðxRjx;−sÞp̂ðx; sÞ�vkdA when xR ∈ D;

(40)

in which for the anticausal Green’s states for a homogeneous back-
ground, s is replaced by −s in equations 28–30. In the derivation
of equation 40, it has been taken into account again that contribu-
tions of the bounding surfaces at ðx21 þ x22Þ → ∞ vanish, because
the integrand of equation 40 is of the order ½ðx21 þ x22Þ−1�
as ðx21 þ x22Þ → ∞.
We may also apply the reciprocity theorem to the domain D in-

side the interfaces ∂D0 and ∂D1, but now, state B is taken to be the
anticausal counterpart of the actual wavefield, whereas state A is the
causal wavefield generated by a point source of volume injection
(see Table 5). We then arrive at

p̂ðxR;−sÞ ¼
Z

x∈ð∂D0∪∂D1Þ

½−ĜqðxRjx; sÞv̂kðx − sÞ

þ Γ̂q
kðxRjx; sÞp̂ðx − sÞ�; vkdA;

when xR ∈ D:

(41)

Comparing equations 40 and 41, it is obvious that the causal actual
wavefield can be obtained from equation 41 by replacing −s by s.
To carry out the decomposition of the actual wavefield, we write

the Green’s function as a plane-wave representation, as

Ĝðx;sÞ¼ 1

ð2π2Þ
Z

ðsα1;sα2Þ∈R2

expð−jsα1x1− jsα2x2− sΓjx3jÞ
2sΓ

dA:

(42)

This representation is used in equations 28 and 29, and the results
are substituted in the right side of equation 41. Changing the order
of integrations, we then have

p̂ðxR;−sÞ¼ 1

ð2π2Þ
Z

ðsα1;sα2Þ∈R2

expð−jsα1xR1 − jsα2xR2 Þ
2sΓ

dA

×
Z

x∈ð∂D0∪∂D1Þ

½−v̂kðx;−sÞsρ expðjsα1x1þ jsα2x2− sΓjxR−xjÞ

þ p̂ðx;−sÞ∂k expðjsα1x1þ jsα2x2− sΓjxR−xjÞ�vkdA:
(43)

Reverting back to the causal wavefield by replacing −s by s and
noting that jxR3 − x3j ¼ xR3 − x3 when x ∈ ∂D0 and jxR3 − x3j ¼
x3 − xR3 when x ∈ ∂D1, we arrive at the decomposition into the
down- and upgoing wavefields:

Table 4. States in the power reciprocity theorem.

State A
(actual state)

State B (volume-injection
Green’s state)

Field state fp̂; v̂kgðx; sÞ fp̂q; v̂qkgðxjxR;−sÞ
Material state fρ; kg fρ; kg
Source state f0; 0g fq̂Bð−sÞδðx − xRÞ; 0g
Domain D (see Figure 1)
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p̂ðx1; x2; xR3 ; sÞ ¼ p̂upðx1; x2; xR3 ; sÞ þ p̂downðx1; x2; xR3 ; sÞ;
(44)

where the spectral counterparts are given by

p̄upðjsα1; jsα2; xR3 ; sÞ ¼ P̄upðjsα1; jsα2; sÞexpðsΓxR3 Þ;
(45)

p̄downðjsα1; jsα2; xR3 ; sÞ ¼ P̄downðjsα1; jsα2; sÞ expð−sΓxR3 Þ:
(46)

The amplitude P̄up of the upgoing wavefield now consists of con-
tributions of surface sources at ∂D0, whereas the amplitude P̄down of
the downgoing wavefield consists of contributions of surface
sources at ∂D1. These amplitudes are expressed by

P̄upðjsα1; jsα2; sÞ

¼ −1
2sΓ

Z
x∈∂D0

½v̂kðx; sÞsρ expðjsα1x1 þ jsα2x2 − sΓx3Þ

þ p̂ðx; sÞ∂k expðjsα1x1 þ jsα2x2 − sΓx3Þ�vkdA;
(47)

P̄downðjsα1; jsα2; sÞ

¼ −1
2sΓ

Z
x∈∂D1

½v̂kðx; sÞsρ expðjsα1x1 þ jsα2x2 − sΓx3Þ

þ p̂ðx; sÞ∂k expðjsα1x1 þ jsα2x2 − sΓx3Þ�vkdA:
(48)

It is remarked that the particle velocity associated with the down-
going wavefield follows directly from equation 46 and wave equa-
tion (equation 13) in a source-free homogeneous medium. The
vertical component of the particle velocity and the acoustic pressure
of the downgoing wavefield are related to each other as

ρv̄up3 ðjsα1; jsα2; xR3 ; sÞ þ Γp̄upðjsα1; jsα2; xR3 ; sÞ ¼ 0: (49)

Similarly, the vertical component of the particle velocity and the
acoustic pressure of the upgoing wavefield are related to each
other as

ρv̄down3 ðjsα1; jsα2; xR3 ; sÞ − Γp̄downðjsα1; jsα2; xR3 ; sÞ ¼ 0:

(50)

The equations derived in this subsection show the decomposition in
the down- and upgoing wavefields in a homogeneous subdomain of
infinite extent in the horizontal directions. The upgoing wavefield
p̂upðx1; x2; xR3 ; sÞ is obtained from the integral representation with
surface contributions from ∂D0 only. Similarly, the downgoing
wavefield p̂downðx1; x2; xR3 ; sÞ is obtained from the integral repre-
sentation with surface contributions from ∂D1 only.
Equations 45–48, together with equations 34–37 derived from

the field reciprocity allow for the computation of up- and

downgoing wavefield constituents from a single measurement plane
∂D0 or ∂D1:

Multicomponent measurement decomposition from a single and
plane recording interface

In the case that measurements are taken along ∂D1 being a plane
interface at x3 ¼ xð1Þ3 , the expressions for the amplitudes in equa-
tions 37 and 48 reduce to

p̄upðjsα1; jsα2; xR3 ; sÞ

¼ exp½sΓðxR3 − xð1Þ3 Þ�
−2Γ

½ρv̄3ðjsα1; jsα2; xð1Þ3 ; sÞ

− Γp̄ðjsα1; jsα2; xð1Þ3 ; sÞ�; (51)

p̄downðjsα1; jsα2; xR3 ; sÞ

¼ exp½−sΓðxR3 − xð1Þ3 Þ�
2Γ

½ρv̄3ðjsα1; jsα2; xð1Þ3 ; sÞ

þ Γp̄ðjsα1; jsα2; xð1Þ3 ; sÞ�; (52)

after which the up- and downgoing constituents of the vertical com-
ponent of the particle velocity can again be obtained from

ρv̄up3 ðjsα1; jsα2; xR3 ; sÞ þ Γp̄upðjsα1; jsα2; xR3 ; sÞ ¼ 0; (53)

ρv̄down3 ðjsα1; jsα2; xR3 ; sÞ − Γp̄downðjsα1; jsα2; xR3 ; sÞ ¼ 0:

(54)

It is remarked that no assumptions have been made so far about the
free surface, not about its shape nor about its reflectivity. Provided
that measurements of the pressure and vertical component of the
particle velocity are available, a complete decomposition into up-
and downgoing wavefield constituents is possible.

Single-measurement wavefield decomposition from a single and
plane recording interface

In some instances, pressure and particle velocity measurements
may not be available. In such cases, typically the pressure wavefield
is measured only. We will now proceed to derive some equations for
wavefield decomposition depending on pressure measurements
only. It is remarked that a similar approach could be taken when
only particle velocity measurements are available.

Table 5. States in the power reciprocity theorem.

State A (volume-injection
Green’s state)

State B
(actual state)

Field state fp̂q; v̂qkgðxjxR; sÞ fp̂; v̂kgðx;−sÞ
Material state fρ; kg fρ; kg
Source state fq̂BðsÞδðx − xRÞ; 0g f0; 0g
Domain D (see Figure 1)
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When only pressure measurements are available, an additional
constraint needs to be used to accomplish the decomposition.
The additional constraint is used to construct the missing particle
velocity measurements. We will assume that the total acoustic pres-
sure vanishes at the free surface x3 ¼ 0. The aim is to determine the
up- and downgoing constituents of the wavefield. In Fokkema and
van den Berg (1993), this problem is considered as a wavefield de-
composition problem (with the complication of the presence of a
source in the homogeneous domain D), and solved using the field
and power reciprocity theorem of the previous chapter. Here, we
will take a simplified approach.
The total wavefield in a point x ∈ D, generated by a monopole

source of the volume-injection type located at xS, is denoted as
fp̂; v̂kgðxjxSÞ, and at the plane surface x3 ¼ 0 we have the bound-
ary condition

lim
x3↓0

p̂ðxjxsÞ ¼ 0: (55)

We first decompose the total pressure wavefield in the half-space
0 < x3 < ∞ into an incident wavefield and a scattered wavefield

p̂ðxjxSÞ ¼ p̂inc;HðxjxSÞ þ p̂sctðxjxSÞ; (56)

where the incident field is the wavefield that would be present in the
half-space, if the domain Dg showed no contrast with the domain D
(see Figure 3).
At a location x, we may write

p̂inc;HðxjxSÞ ¼ sρq̂SĜHðxjxSÞ; (57)

where

ĜHðxjxs; sÞ ¼ expð− s
c jx − xsjÞ

4πjx − xsj −
expð− s

c jx − xs
0 jÞ

4πjx − xs
0 j ;

with c ¼ ðκρÞ−1
2;

(58)

and xS
I ¼ ðxS1 ; xS2;−xS3Þ denotes the image point of xS with respect

to the reflecting free surface at x3 ¼ 0. It can be observed that p̂inc;H

vanishes at x3 ¼ 0 and that, therefore,

lim
x3↓0

p̂sctðxjxsÞ ¼ 0: (59)

The scattered wavefield, defined as the difference between the
total wavefield and incident wavefield, can be written as a sum
of up- and downgoing wavefield constituents; i.e.,

p̂sctðx1; x2; xR3 ; sÞ ¼ p̂downðx1; x2; xR3 ; sÞ þ p̂upðx1; x2; xR3 ; sÞ:
(60)

When only the scattered waves are considered, the domain D
over which we considered the wavefield decomposition earlier will
not contain sources. Hence, we can use the equations derived for
wavefield decomposition to obtain equations for the up- and down-
going wavefield using pressure data only. Substitution of equa-
tion 59 into equations 34 and 36, where the boundary ∂D0 of
domain D is the free surface, leads to

p̄downðjsα1; jsα2; x3; sÞ

¼ expð−sΓx3Þ
2Γ

ρv̄sct3 ðjsα1; jsα1; 0jxS; sÞ: (61)

Similarly, substitution of equation 59 into equations 45 and 47
leads to

p̄upðjx1; jsα2; x3; sÞ ¼
expðsΓx3Þ

−2Γ
ρv̄sct3 ðjsα1; jsα1; 0jxS; sÞ:

(62)

Summation of the two results leads to an expression for the un-
known scattered vertical component of the particle velocity wave-
field in terms of the measured scattered wavefield

vsct3 ðjsα1; jsα2; 0jxS; sÞ

¼ −Γ
ρ sinhðsΓx3Þ

p̄sctðjsα1; jsα2; x3jxS; sÞ: (63)

Combination of equations 62 and 63 then leads to an expression
in the spatial Fourier domain for the upgoing pressure wavefield in
terms of the measured scattered wavefield

p̄upðjsα1; jsα2; x3jxS; sÞ

¼ expðsΓx3Þ
2 sinh xðsΓxR3 Þ

p̄sctðjsα1; jsα2; xR3 jxS; sÞ: (64)

It is noted that this equation does not rely on any measurements of
the particle velocity, which is due to the additional assumptions
made related to the shape of the sea surface and its reflectivity.
Although equation 64 suggests that the scattered wavefield can
be decomposed into up- and downgoing wavefields in a straightfor-
ward way, it is remarked that a straightforward application leads to
numerical instabilities when the denominator on the right side
approaches zero. For a constant receiver depth xR3 ; this occurs
for distinct combinations of imaginary Laplace frequency para-
meters and angular-slownesses α1 and α2, which are related to
the angular frequency ω ¼ 2πf, where f is the frequency and
the real slowness vector p by

s ¼ jω; (65)
Figure 3. A homogeneous subdomain D bounded by the plane sur-
face x3 ¼ 0 and the interface ∂Dg.

WA48 van Borselen et al.

D
ow

nl
oa

de
d 

09
/1

8/
15

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://library.seg.org/action/showImage?doi=10.1190/geo2012-0332.1&iName=master.img-002.jpg&w=238&h=130


p ¼ p1i1 þ p2i2 þ p3i3 ¼ jα: (66)

The numerical instabilities for certain frequency-slowness com-
binations, also known as notches, may be circumvented through the
use of complex Laplace parameters (see equation 6), but it must be
noted that the result will still be compromised by the fact that for
those distinct fω; p1; p2g combinations, the scattered pressure
wavefield contains no relevant data.

Dual-pressure measurement decomposition from two plane
recording interfaces

One way to circumvent the numerical instabilities in wavefield
decomposition is to complement the pressure measurement with an-
other pressure measurement at a different receiver depth. When two
independent pressure measurements are available at the receiver
depth xR

ð1Þ
3 and xR

ð2Þ
3 , respectively, the application of equation 64

to both measurements, after least-squares summation, leads to

p̄upðjsα1; jsα2; x3jxS; sÞ ¼
expðsΓx3Þ

2

·

�
sinhðsΓxRð1Þ

3 Þp̂sctð1Þ ðjsα1; jsα2; xRð1Þ
3 jxS; sÞ

j sinhðsΓxRð1Þ
3 Þj2 þ j sinhðsΓxRð2Þ

3 Þj2

þ sinhðsΓxRð2Þ
3 Þp̂sctð2Þ ðjsα1; jsα2; xRð2Þ

3 jxS; sÞ
j sinhðsΓxRð1Þ

3 Þj2 þ j sinhðsΓxRð2Þ
3 Þj2

�
: (67)

It is noted that receiver depths xR
ð1Þ

3 and xR
ð2Þ

3 can always be cho-
sen such that the denominator of equation 67 will never approach
zero. Obviously, in the derivation of equation 67, the same assump-
tions about the free surface were used as for the single pressure mea-
surement case.

Single-measurement decomposition from a single depth-varying
recording interface

Another way to circumvent the numerical instabilities in the de-
composition of the measured scattered pressure wavefield is to take
measurements of the scattered pressure wavefield at a variable
depth, where the depth of the receiver depends on the offset between
the source and the receivers. In such a case, the notches may pose
less of a problem because the measured scattered pressure wavefield
p̄sct in the transformed domain will no longer be zero because of the
diversity of receiver depths used. In other words, the notches in the
transformed domain will be more diverse in their character.
When the receivers are located at arbitrary depths, the scattered

wavefield in the spectral domain cannot be determined explicitly.
Therefore, wavefield decomposition must be considered as a
solution of an integral equation that, after discretization, can be ob-
tained as the solution of a system of equations. For arbitrary
xR ¼ ðxR1 ; xR2 ; xR3 Þ, the depth of the receivers are a single-valued
function of the horizontal receiver coordinates; specifically, it is
written as xR3 ¼ xR3 ðxR1 ; xR2 Þ.
Transforming equation 64 back to the spatial domain, we arrive at

p̂upðx1; x2; x3jxS; sÞ

¼ F−1
�

expðsΓx3Þ
2 sinh xðsΓxR3 Þ

Ffpsctðx1; x2; xR3 jxS; sÞg
	
; (68)

in which fF;F−1g is the spatial Fourier transform pair defined by
equations 6 and 7. Rewriting this explicitly to arrive at an integral
equation for the scattered wavefield, we obtain

Z
ðsα1;sα2Þ∈R2

Kðx1; x2jjsα1; jsα2Þp̄upðjsα1; jsα2; x3jxS; sÞdA

¼ p̂sctðx1; x2; x3jxS; sÞ; (69)

where the kernel K is defined by

Kðx1; x2jjsα1; jsα2Þ ¼ expð−jsα1x1;−jsα2x2Þ

·
2 sinhðsΓxR3 ðxR1 ; xR2 ÞÞ

expðsΓx3Þ
: (70)

This integral equation is ill-posed, because the kernel has a zero
at the notches. However, because measurements are taken at a vari-
able depth, the notches in the spectral domain are assumed to be less
profound. In addition, a preconditioned conjugate gradient iterative
scheme may overcome numerical instabilities (van Borselen et al.,
2008, 2011).

Source wavefield decomposition

In all the derivations up to this point, the spatial Fourier trans-
formations have been carried out with respect to the horizontal re-
ceiver coordinates of the scattered wavefield. However, for the
scattered wavefield, the source and receiver coordinates can be in-
terchanged due to physical reciprocity (Fokkema and van den Berg,
1993). As a result, for a fixed receiver position, carrying out the
spatial Fourier transformations with respect to the horizontal source
coordinates of the scattered field leads to decomposition into up-
and downgoing source wavefield constituents. When the source
and receiver decomposition are combined, an expression for the
source- and receiver decomposed wavefield is obtained through

p̂deghostðxRjx1; x2; x3; sÞ ¼ F−1
�

expðsΓx3Þ
2 sinh xðsΓxS3Þ

· FfpupðxRjx1; x2; xS3; sÞg
	
; (71)

in which fF;F−1g is the spatial Fourier transform pair defined by
equations 7 and 8, now acting on the horizontal source coordinates.
In the derivation of equation 71, the same assumptions with regards
to the shape of the sea surface and its reflectivity are used as in the
derivation of equation 64.

Wavefield decomposition: Numerical examples

In this section, we will demonstrate the different wavefield de-
composition methods derived in the previous section using a single
2D configuration. The numerical data example is chosen to be sim-
plistic to allow for an optimal analysis and comparison of the per-
formance of the various methods.
We will first consider the case in which measurements are made

using a recording streamer where the receiver depth is dependent on
the distance between source and receiver. We will consider a single
shot gather, with a point source located at a 5-m depth, and receivers
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Figure 4. The modeled scattered pressure wavefield shot gather measured at variable depth (a), the modeled vertical component of the particle
velocity measured at variable depth (b), the modeled upgoing pressure wavefield at reference depth 7.5 m (c), the modeled downgoing pressure
wavefield at reference depth 7.5 m (d), the modeled upgoing vertical component of the particle velocity at reference depth 7.5 m (e), the
modeled downgoing vertical component of the particle velocity at reference depth 7.5 m (f), the computed upgoing pressure wavefield at
reference depth 7.5 m (g), the computed downgoing pressure wavefield at reference depth 7.5 m (h), the computed upgoing vertical component
of the particle velocity at reference depth 7.5 m (i), the computed downgoing vertical component of the particle velocity at reference depth
7.5 m (j), and their respective differences (k)-(n).
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Figure 5. The modeled scattered pressure wavefield shot gather measured at a constant depth of 25 m (a), the modeled vertical component of
the particle velocity measured at a constant depth of 25 m (b), the modeled (noise-free) upgoing pressure wavefield at a reference depth of
7.5 m (c), the modeled (noise-free) downgoing pressure wavefield at reference depth 7.5 m (d), the modeled (noise-free) upgoing vertical
component of the particle velocity at reference depth 7.5 m (e), the modeled (noise-free) downgoing vertical component of the particle velocity
at reference depth 7.5 m (f), the computed upgoing pressure wavefield at reference depth 7.5 m (g), the computed downgoing pressure wave-
field at reference depth 7.5 m (h), the computed upgoing vertical component of the particle velocity at reference depth 7.5 m (i), the computed
downgoing vertical component of the particle velocity at reference depth 7.5 m (j), and their respective differences (k)-(n).
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are located behind the source with a receiver distance of 5 m, where
the first receiver is at a 10-m depth, where the receiver depth is
linearly increasing with offset (distance between the source and
receiver) up to a 40-m depth at an offset of 1500 m and constant
from 1500 up to 2500 m at a 40-m depth. The temporal sampling is
2 ms, and the recording length is 4000 s. The model consists of three
layers: the first layer extends from the free surface to a depth of
225 m, the second layer extends to 225 to 400 m, and the third layer
extends from 400 m to an infinite depth. The mass density of the
fluid in the first layer is 1000 kg∕m3, and the compressibility is
2.96 × 10−10 Pa−1, and the acoustic wave speed amounts to
1500 m∕s. The mass density of the fluid in the second layer is
1500 kg∕m3, and the compressibility is 1.67 × 10−10 Pa−1, whereas
the acoustic wave speed amounts to 2000 m∕s. The mass density of
the fluid in the third layer is 1800 kg∕m3, and the compressibility is
8.89 × 10−11 Pa−1, whereas the acoustic wave speed amounts to
2500 m∕s. To make the analysis more realistic, Gaussian noise
has been added to all modeled data, with a signal-to-noise ratio
of 20. Figure 4a shows the modeled input shot gather with the scat-
tered pressure wavefield, and Figure 4b shows the modeled normal
component of the particle velocity field. Figure 4c–4f shows the
modeled (noise-free) up- and downgoing pressure and vertical com-
ponent of the particle velocity wavefield at a reference receiver
depth of 7.5 m. Figure 4g–4j shows the results after using equa-
tions 37 and 48–50 for the up- and downgoing wavefield from mea-
surements on ∂D1 derived in the previous section. Note that the
decomposition results contain less noise, from which can be de-
ducted that the decomposition operators appear to reduce the noise
content of the data. Figure 4k–4n shows the difference between the

computed results and the reference results. Note the good agreement
of the results and the minimal differences.
In the next example, we will consider the same 2D example, but

now measurements are made using a recording streamer in which
the receiver depth is independent on the distance between the source
and receiver, located at a constant value of 25 m.
Figure 5a and 5b shows the modeled input shot gather for the

scattered pressure and the vertical component of the particle velo-
city wavefield. Figure 5c–5f shows the modeled up- and downgoing
pressure and vertical component of the particle velocity wavefield at
a reference receiver depth of 7.5 m. Figure 5g–5j shows the results
after using equations 51–54. Note again the reduced noise present in
the data after decomposition Figure 5k–5n shows the difference be-
tween the computed results and the reference results. Note again the
good agreement.
In the next example, we will consider the same pressure-measure-

ment experiment, but now we use two recording streamers, located
at two different but constant depths, 10 and 16 m, respectively. Fig-
ure 6a and 6b shows the modeled input pressure wavefield shot
gathers, with the Gaussian noise added. Figure 6c shows the mod-
eled upgoing pressure wavefield at a reference receiver depth of
7.5 m. Figure 6d shows the results after using equation 67, and Fig-
ure 6e shows the difference the computed results and the reference
results. Note that the constant-depth two-streamer configuration ap-
pears to be able to cope with the spectral notches very well because
no singularities in the denominator of equation 67 occur. We note
again the reduced noise present in the data after decomposition.
In the next example, we will consider a pressure-measurement-

only experiment, using a recording streamer in which the receiver

Figure 6. The modeled input scattered pressure wavefield shot gather measured at 10 m depth (a), the modeled input scattered pressure
wavefield shot gather measured at 16 m depth (b), the modeled (noise-free) upgoing pressure wavefield at reference depth 7.5 m (c), the
result of the decomposition using the dual scattered pressure data (d), and the difference (e).
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Figure 8. The modeled input scattered pressure wavefield shot gather for variable depth measurements (a), the f-k spectrum of the shot record
(b), the modeled upgoing pressure wavefield at reference depth 7.5 m (c), the result of the conjugate gradient solution (d), the difference (e), and
the f-k spectrum of the result obtained using the conjugate gradient solution (f).

Figure 7. The modeled input scattered pressure wavefield shot gather for constant-depth measurements (a), the f-k spectrum of the shot record
(b), the modeled upgoing pressure wavefield at reference depth 7.5 m (c), the result of the decomposition using the scattered pressure data only
(d), the difference (e), and the f-k spectrum of the result obtained (f).
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depth is independent on the distance between source and receiver,
located at a constant value of 25 m. Figure 7a shows the modeled
input pressure wavefield shot gather. Figure 7b shows the f-k spec-
trum of the shot record. Note the notches in the section, showing
frequency-wavenumber combinations in which no reflection energy
is present. Figure 7c shows the modeled upgoing pressure wavefield
at a reference receiver depth of 7.5 m. Figure 7d shows the results
after using equation 64 derived in the previous section, and
Figure 7e shows the difference between the computed results
and the reference results. Note that the constant-depth streamer con-
figuration is not able to cope with the spectral notches due to the
singularities in the denominator of equation 64. As remarked, at the
spectral notches, the scattered pressure wavefield contains no rele-
vant data. Because the noise in the data has a random Gaussian dis-
tribution, the noise is severely enhanced for frequency-wavenumber
combinations in which the spectral notches occur in the scattered
input pressure data, which is demonstrated in Figure 7f. This occurs
despite the complex frequencies that are used to avoid the singula-
rities in the denominator of equation 64. It is remarked that the
application of noise attenuation techniques prior to wavefield
decomposition may reduce the impact of the spectral notches after
wavefield decomposition. However, it must be realized that the re-
sults obtained become directly dependent on the geophysical integ-
rity of the noise attenuation method(s) used.
Next, we will consider the same 2D example, but now only pres-

sure measurements are available on the same variable-depth strea-
mer used previously. Figure 8a shows the modeled input scattered
pressure wavefield shot gather. Figure 8b shows the f-k spectrum of
the shot record. Note that the notches in the section are less visible
compared to the notches for the constant-depth streamer shown in
Figure 7b, indicating that at these f-k combinations, now some re-
flection energy is present. The upgoing pressure wavefield can be
obtained through equations 69 and 70, which, after discretization of
the integral equation, can be obtained through a preconditioned
conjugate gradient iterative scheme (van Borselen et al., 2009).
Figure 8c shows the modeled upgoing pressure wavefield at a re-
ference receiver depth of 7.5 m. Figure 8d shows the results after
solving the discretized integral equation, and Figure 8e shows the
difference between the computed results and the reference results. It
is observed that the variable-depth streamer configuration is able to
cope with the spectral notches reasonably well due to the “notch
diversity” discussed in the previous section. However, some arti-
facts can still be seen. Figure 8f shows the f-k spectrum of the re-
sults obtained. It can be observed that noise has been blown up by
the wavefield decomposition, in particular with a periodicity of
around 18.75 Hz, which is caused by the notch related to the con-
stant depth of 40 m of the streamer from offset 1500 m up
to 2500 m.

CONCLUSIONS

In this paper, we have derived fundamental equations for wave-
field decomposition for multisensor and single-sensor data, for

depth-varying and depth-independent recordings from marine seis-
mic experiments using a single- or dual-source configuration.
In marine seismic acquisition, source and receiver ghosts are gen-

erated when the energy generated by the seismic source, as well as
any upgoing wavefield propagating upward from the subsurface, is
reflected downward by the free surface. As a result, complex inter-
ference patterns between up- and downgoing wavefields are present
in the recorded data, affecting the spectral bandwidth of the re-
corded data negatively. Wavefield decomposition is used to remove
the ghost events present in the recorded data, thereby enhancing the
spectral bandwidth and the resolution of the data.
A comparison is made between the results obtained for 2D syn-

thetic example designed to highlight the strengths and weaknesses
of the various acquisition configurations.
It is demonstrated that by using the proposed wavefield decom-

position method, multisensor data (measurements of pressure and
particle velocity components, or multidepth pressure measure-
ments) allow for optimal wavefield decomposition as independent
measurements are used to eliminate the interference patterns caused
by the free surface. Single-sensor data using constant-depth record-
ings are shown to be incapable of producing satisfactory results in
the presence of noise. Single-sensor data using a configuration with
depth-varying measurements are able to deliver better results than
when constant-depth recordings are used, but the results obtained
are not of the same quality as when multisensor data are used.
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