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Machine Learning and Related 
Applications to Seismic 
Automation is high on the agenda of seismic companies seeking to both augment 
decision making and reduce project cycle times. The use of artificial intelligence (AI) 
methods have quickly come to dominate the programs of major geophysical 
conferences, and includes machine learning (ML), big data analytics, and stochastic 
modeling methods to test different realizations of physics-based scenarios. Although 
the 2018 Gartner hype cycle places deep neural networks (DNN) and ML (DNN being 
a subset of ML) near the ‘Peak of inflated expectations’, there is now an incredible 
engagement by many fields of scientific and engineering academia and industry with 
ML, so the transition to productive use may be fairly rapid. I briefly consider applications 
to the seismic life cycle before focusing upon automated velocity model building (VMB). 

Introduction to Artificial Intelligence 

The traditional definition for ML given is that it is a field of study that gives computers the ability to learn without 
being explicitly programmed. An alternate phrasing may be that it is a field of study that gives computers the ability 
to be implicitly programmed using high levels of abstraction in how the code is built. A common theme at the 2018 
SEG conference in Anaheim was that ML can play a role where the physics is not understood or economically 
tractable. Although the physics may not be understood, ML derives mathematical models that can extract 
knowledge and patterns from data; most commonly using various forms of neural networks. ML includes supervised 
learning (when you know the question you are trying to ask and you have examples of it being asked and answered 
correctly), unsupervised learning (you don’t have answers and may not fully know the questions), and reinforcement 
learning (trial and error solving). 

3D seismic surveys acquire many thousands of highly redundant and overlapping snapshots of the subsurface (shot 
gathers). This redundancy can be exploited in many emerging ML applications to the entire seismic life cycle. From 
a seismic interpreter perspective, many emerging ML applications involve feature detection and classification of 
stratigraphic and morphological features, automated fault interpretation, and automated quantitative interpretation. 
From a seismic processing and imaging perspective, obvious applications include noise attenuation, aspects of 
velocity model building (VMB), signal reconstruction, the optimization of parameters used in seismic imaging. In the 
remainder of this article I focus on VMB. 

Augmented and Automated Velocity Model Building 

An accurate seismic velocity depth model is the foundation for all multi-channel seismic signal processing and 
imaging outcomes, and continues to be invaluable for many quantitative interpretation and reservoir modeling 
pursuits. Refraction and reflection tomography are the most popular VMB methods in the last two decades because 
although they traditionally involve a high degree of human interaction between each iterative update, the algorithms 
are computationally efficient. Full Waveform Inversion (FWI) is rapidly increasing in profile, but is computationally 
demanding, has no guarantee of global convergence, and traditionally benefits from an accurate starting model. 

With regards to FWI, although advances in regularization of the gradient term and the use of optimal transport 
norms in the misfit function have considerably improved FWI convergence stability and avoid cycle skipping (e.g. 
Chemingui et al., 2019; Ramos-Martinez et al., 2019a; Ramos-Martinez et al., 2019b), neural network-based 
solutions are being investigated for extrapolating ultra-low frequency signal as a preconditioner to FWI (e.g. 
Ovcharenko et al., 2018), to also stabilize FWI convergence, and to estimate velocity models from modelled shot 
gathers as an alternative to FWI. For example, Araya-Polo et al. (2018) from Shell use DNNs to estimate 2D velocity 
models from raw shot gathers using thousands of synthetic training models that contain a variety of geological 
features and faults, and Øye and Dahl (2019) from Equinor use a convolutional neural network (CNN) trained on 
pairs of randomly-generated synthetic velocity models and corresponding synthetic shot gathers produced with 
acoustic finite difference modelling; ‘similar’ to FWI. When the velocity models for each shot gather estimated using 
a known reference model are stacked the result imperfectly resembles the background velocity trend. 

https://www.pgs.com/globalassets/technical-library/tech-lib-pdfs/eagepesgb_chemingui_et_al_april2019_fwi_deep.pdf
https://www.pgs.com/globalassets/technical-library/tech-lib-pdfs/tle_ramos_et_al_mar2019_fwi.pdf
https://www.pgs.com/globalassets/technical-library/tech-lib-pdfs/eagepesgb_jamos-martinez_april2019_fwi_cycleskip.pdf
http://earthdoc.eage.org/publication/publicationdetails/?publication=92618
https://doi.org/10.1190/tle37010058.1
http://earthdoc.eage.org/publication/publicationdetails/?publication=96007
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Figure 1 schematically compares FWI and NN-based VMB. 

 

Figure 1. Schematic comparison of FWI (left) vs. the training setup for neural network-based velocity estimation 
(right: based on Øye and Dahl, 2019). 

Pragmatic Automated Velocity Model Building 

A stochastic simulation is a simulation that traces the evolution of variables that can change stochastically 
(randomly) with certain probabilities. Where there is interest in understanding the risk and uncertainty in the 
prediction and forecasting of models, such as is clearly relevant to automated VMB, Monte Carlo simulations can 
be used to model the probability of different outcomes that cannot easily be predicted due to the intervention of 
random variables. 

Martin (2019) from PGS demonstrates how a wavelet-shift reflection tomography solution based upon fast beam 
migration (hyperTomo) can be used in a pseudo-random implementation to generate uncertainty attributes for a 
final velocity model. On one hand this can be used to augment risk mitigation during seismic imaging, target 
positioning and the estimation of volumetrics; and on the other hand the solution can be adapted to estimate 
accurate velocity models from highly imperfect starting models in a fully automated manner. Figure 2 is from an 
upcoming publication by Martin and Bell (2019) where final 3D velocity models from two real 3D starting models 
were computed without any human interaction and compared to the best known final model. The results are 
remarkably similar in both cases, and could be achieved two orders of magnitude faster than traditional manual 
velocity picking followed by traditional reflection tomography with human interaction between each iteration. A 
practical benefit of this approach (stochastic modeling as opposed to ML) is that the computational efficiency of 
hyperTomo to run hundreds or even thousands of model realizations on affordable computer clusters in a short 
timeframe. 

Summary 

The seismic industry will adopt a diverse range of AI solutions to a diverse range of seismic problems in coming 
years; both to augment better decision making, and to significantly accelerate the cycle time of seismic projects. 
Computationally-demanding processes such as velocity model building and seismic imaging are obvious targets 
for the development of innovative ways to do things much faster. Using the example here of velocity model building, 
although neural network-based alternatives to full waveform inversion (FWI) have been most popular in the 
literature, it can also be demonstrated that stochastic modeling methods using highly efficient reflection tomography 
can delivery accurate results up to two orders of magnitude faster. What is clear is that this arena is in its infancy, 
and pragmatic implementations will more likely move success from inflated expectations to demonstrable success. 

 

https://www.pgs.com/globalassets/technical-library/tech-lib-pdfs/eagepesgb_martin_april2019_modeluncertainty.pdf
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Figure 2. (top row) Final tomographic velocity model, a hand-picked version, and a deliberately wrong model; (lower 
row) Final tomographic velocity model, and the results of running an automated hyperTomo workflow using the 
starting models in the second and third panels of the top row, respectively. 

PGS Links 

Full Waveform Inversion (FWI) https://www.pgs.com/imaging/tools-and-techniques/velocity-model-
building/technology/full-waveform-inversion/ 

PGS hyperBeam   https://www.pgs.com/imaging/tools-and-techniques/velocity-model-
building/technology/pgs-hyperbeam/ 

PGS hyperTomo   https://www.pgs.com/imaging/tools-and-techniques/velocity-model-
building/technology/reflection-tomography---hypertomo/ 

Velocity Model Uncertainty  https://www.pgs.com/imaging/tools-and-techniques/velocity-model-
building/technology/model-uncertainty/ 

 

  

https://www.pgs.com/imaging/tools-and-techniques/velocity-model-building/technology/full-waveform-inversion/
https://www.pgs.com/imaging/tools-and-techniques/velocity-model-building/technology/full-waveform-inversion/
https://www.pgs.com/imaging/tools-and-techniques/velocity-model-building/technology/pgs-hyperbeam/
https://www.pgs.com/imaging/tools-and-techniques/velocity-model-building/technology/pgs-hyperbeam/
https://www.pgs.com/imaging/tools-and-techniques/velocity-model-building/technology/reflection-tomography---hypertomo/
https://www.pgs.com/imaging/tools-and-techniques/velocity-model-building/technology/reflection-tomography---hypertomo/
https://www.pgs.com/imaging/tools-and-techniques/velocity-model-building/technology/model-uncertainty/
https://www.pgs.com/imaging/tools-and-techniques/velocity-model-building/technology/model-uncertainty/
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