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FWI for model updates in large-contrast media

Abstract
We describe a new solution for recovering the long-wavelength 

features of a velocity model in gradient-based full-waveform inver-
sion (FWI). The method uses reflected and transmitted wave 
modes to recover high-resolution velocity models. The new FWI 
gradient enables reliable velocity updates deeper than the maximum 
penetration depth of diving waves and reduces the FWI dependency 
on recording ultralong offsets. We also discuss a new FWI regu-
larization scheme that overcomes the limitations of the inversion 
in the presence of high-contrast geobodies and cycle skipping. The 
solution utilizes a priori information about the earth model in the 
regularization as an extra term in the objective function. The imple-
mentation makes use of the split Bregman method, making it 
efficient and accurate. Results from applying the new FWI gradient 
to field data show that we can combine both transmitted and re-
flected energy in a global FWI scheme to obtain high-resolution 
velocity models without imprint of the reflectivity on the velocity 
updates. We illustrate the new regularization method’s potential 
on the BP 2004 velocity benchmark model where our regularized 
FWI solution is capable of using a simple starting velocity model 
to deliver a high-quality reconstruction of salt bodies.

Introduction
Full-waveform inversion (FWI) is well established as a velocity 

estimation tool in the seismic industry. From the time FWI was 
introduced in the early 1980s by Tarantola, we had to wait almost 
30 years until the technology achieved widespread acceptance. 
As stated, FWI has an intuitive and simple objective: minimize 
data misfit. However, in practice, this is clearly a complex task 
that requires the use of forward modeling to generate data, opti-
mization algorithms, and regularization to help cope with the 
inherit nonlinearity of the problem.

The delay in uptake possibly can be attributed first to the (at 
the time) lack of cost-effective compute solutions powerful enough 
to solve the many forward modeling and imaging iterations needed 
as part of the FWI implementation. Seismic acquisition equipment 
and templates from this era also posed challenges: offsets were 
limited or even short, and recording systems were often equipped 
with harsh low-cut filters, effectively eliminating the low frequen-
cies needed for FWI. It is important to keep in mind that the 
goal at the time was to acquire data for reflection seismology; 
little focus was put on the ability to record refractions and diving 
waves. Ocean-bottom-cable (OBC) and ocean-bottom-node 
(OBN) data were used in some early FWI applications as they 
circumvent these issues by decoupling the sources and receivers, 
providing long-offset, rich, and even full-azimuth coverage and 
more reliable recordings of low frequencies. Lately, applications 
to streamer data have become more widespread as the availability 
of long-offset data with good low-frequency content has increased. 
This has helped to truly establish FWI in the mainstream, in 
particular from a data-volume perspective as 3D streamer seismic 
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covers far more areas than nodes or OBC. Lately, use of multivessel 
acquisition schemes that can acquire very long offsets have further 
progressed this, enabling streamer-based recording of the diving 
waves and refractions that are so important for achieving conver-
gence in most FWI schemes.

FWI inverts for the velocity model by solving a nonlinear 
inverse problem minimizing the difference between modeled data 
and recorded field data (Tarantola, 1984). The matching is quanti-
fied by the residuals of a least-squares objective function, and the 
model update is computed as a scaled representation of its gradient. 
For most, if not all, exploration seismic applications, FWI is an 
ill-posed problem due to the band-limited nature of the seismic 
data and the limitations of the acquisition geometries; we do not 
have access to the full wavefield. To mitigate this, typical FWI 
implementations involve iterative solution schemes with various 
forms of regularization applied to gradients and/or solutions. It 
is also common to approach FWI with a multiscale approach 
— i.e., starting from low frequencies and adding higher frequencies 
to the problem as the recovered model improves. Provided with 
the right data, FWI can produce high-resolution models of the 
subsurface when compared to ray-based methods.

Limitations to current implementations:  
Shallow water, reflectivity

Although well established as part of the velocity model build-
ing flow, most successful applications of FWI to date have been 
limited to shallow-water environments. This is because most 
implementations rely heavily on refracted energy or diving waves. 
Put this together with the offset limitations that exist in seismic 
data — stream and node alike — and it follows naturally that 
shallow settings lend themselves easiest to being addressed by 
FWI as they are better sampled by refractions. Liu et al. (2012) 
gave a recent application of FWI to shallow-water OBC in which 
accurate overburden velocities were obtained using refractions. 
This not only improved the shallow imaging but also resolved 
depth ambiguities and mis-ties at reservoir level. A similar case 
using data from a dual-sensor towed-streamer acquisition was 
presented by Zou et al. (2014) in which the authors show that 
modern streamer data contains refractions that produce good 
FWI velocity updates to a depth of about one-fourth of the 
streamer length. In these scenarios, FWI relied mainly on recorded 
diving waves to resolve small-scale geologic features up to the 
deepest turning point. For deeper targets, FWI needs to rely on 
reflected energy to update the model. However, as we will discuss 
later in this article, using the conventional FWI gradient computa-
tion in such situations is challenging unless the recorded reflections 
have extraordinary low-frequency content.

Beyond the depth limitations of refractions, a range of factors 
will influence how well FWI will resolve the velocities in the 
subsurface. A key role is played by the rock formations over which 
the seismic was acquired; harder rocks (well consolidated) tend 
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to have good correlation between veloc-
ity and reflectivity, which is a common 
assumption in most FWI implementa-
tions. A typical FWI scheme uses an 
explicit relationship between density 
and velocity in the forward-modeling 
step, such as Gardner’s relation, so there 
is an intrinsic assumption that change 
in reflectivity is also a change in velocity. 
However, in many softer rocks and 
unconsolidated sediments, the reflectiv-
ity is typically correlated to density 
changes and not velocity changes, as 
the latter is typically driven by pressure 
changes, burial history, etc. When ap-
plying FWI in basins with such char-
acteristics, for example in the Gulf of 
Mexico, great care must be taken to 
avoid that the FWI updates not only 
maps reflectivity into the velocity model. 
FWI might produce a “pretty” velocity 
field, but it is often an erroneous representation of what is actually 
happening in the subsurface.

To move beyond the typical limitations outlined above, there 
has been a flurry of activity in recent years to reformulate FWI 
algorithms to include reflected energy for retrieving long-wave-
length updates (e.g., Xu et al., 2013; Zhou et al., 2015, Alkhalifah, 
2015). The fundamental idea is to compute a gradient in which 
undesired reflectivity is not present, such that the full wavefield 
can be used in FWI to produce high-resolution velocity models 
that correctly predict refractions and reflections — a key step when 
using the models for depth migration and imaging. These improve-
ments to the physics of FWI are nicely complemented by the in-
troduction of new regularization schemes to stabilize the solution 
to the inversion step of FWI — i.e., improving the implementation’s 
mathematics. FWI is particularly challenged when facing large-
contrast geobodies such as salt bodies or volcanics. In such situa-
tions, the FWI solution often gets trapped in local minima unless 
the starting model is very accurate. Introduction of total variation 
(TV) regularization (Guo and de Hoop, 2013) and, most recently, 
the use of vertical hinge-loss asymmetric TV (Esser et al., 2015), 
have offered important insights into how such situations can be 
mitigated when applying FWI to large-scale field data sets.

In the following pages, we will propose and review the concepts 
behind a new FWI gradient implementation that eliminates the 
migration isochrones that typically dominate FWI gradients in 
heterogeneous media. By separating low-wavenumber from high-
wavenumber components in the gradient, we can produce long-
wavelength velocity updates at depths greater than the penetration 
depth of the diving waves. This is followed by a discussion of how 
we have generalized the ideas of Esser et al. (2015) by combining 
the variable weighted L1 norm of the total variation of the model 
with a weighted version of the model spatial variability. The variable 
regularization parameters allow refinement of the sediments region 
of the model with a mild regularization, while promoting sharp 
contrast and constant velocity geobodies in a different region with 
a strong regularization. Several data examples, both synthetic and 

field data, highlight the method’s performance aspects. Our new 
solutions are able to provide high-resolution velocity models from 
records containing diving waves and reflections without the migra-
tion imprint provided by conventional FWI.

A robust gradient for macro-velocity model updates
In conventional FWI, we solve a nonlinear inverse problem 

by iteratively updating the model to minimize an objective func-
tion, which is the difference between the modeled seismic data 
and the recorded field data. This misfit function is generally 
minimized in a least-squares sense, and the model update is 
computed as a scaled representation of its gradient. In the case of 
an isotropic acoustic medium parameterized in terms of bulk-
modulus and density (κ, ρ), Tarantola (1984) shows that the gradi-
ent depends on the kernels for κ and ρ that can be written as:

Kκ (x) = 1
κ (x)

∂S(x,t )
∂t

∂R(x,T − t )
∂t∫ dt                (1)

and

K ρ (x) = 1
ρ(x)

∇S(x,t ) ⋅∇R(x,T − t )∫ dt ,             (2)

where κ(x) = ρ(x)v2(x) is the equation that relates the bulk modulus 
to velocity, S(x,t) is the source wavefield, and R(x,T – t) is the 
residual wavefield after time reversal. Equations 1 and 2 are sen-
sitivity kernels for the respective parameter and measure the 
variation in the misfit function caused by change in that parameter 
while holding the others fixed. The sensitivity kernels corresponding 
to equations 1 and 2 for a simple two-layer model are shown in 
Figures 1a and 1b. Note how the back-scattered energy in the 
kernels, or “rabbit ears,” changes polarity in the two images. This 
fact was recognized in the work of Whitmore and Crawley (2012) 

Figure 1. Sensitivity kernels of a source-receiver pair in a model with a homogeneous layer overlying a halfspace: 
(a) bulk modulus, (b) density, (c) impedance, and (d) velocity.
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who introduced a new reverse time migration (RTM) imaging condition formed by the 
summation of two kernel components to suppress low-wavenumber imaging artifacts. For 
the RTM application, the aim was to remove the low wavenumbers — quite opposite of 
what we aim to do for FWI. Using the sensitivity kernels in equations 1 and 2, we can express 
new kernels in terms of bulk modulus and density by simply forming linear combinations

K v(x) = K K (x)− K ρ (x)                                                (3)

KZ (x) = K K (x)+ K ρ (x) ,                                              (4)

where the impedance kernel in equation 4 can be recognized as the RTM imaging condition 
presented by Whitmore and Crawley (2012). The impedance kernel comprises the high-
wavenumber components of the velocity field while removing the unwanted backscattered 
noise. The examples presented in their paper, using heterogeneous models, highlighted the 
importance of dynamically weighting the different components of the impedance kernel 
to achieve optimal removal of the low-wavenumber artifacts. Figure 1c shows the result of 
weighting the components from Figures 1a and 1b to produce an RTM impulse response 
free of back-scattered noise.

On the other hand, the velocity kernel given by equation 3 is ideal for FWI where the 
low-wavenumber components of the gradient are preferred. As we know, the high wave-
numbers associated with reflections may mislead the inversion. Following the premises of 
Whitmore and Crawley (2012), an FWI gradient can be derived by dynamically weighting 
the velocity sensitivity kernel (equation 3). Their dynamic weights can be adapted to alter-
natively remove the high wavenumbers from the FWI gradient in a heterogeneous media. 
The new FWI gradient derived from equation 3 is:

G(x) = 1
2A(x)

W1(x,t ) 1
v 2(x)

∂S(x,t )
∂t

∂R(x,T − t )
∂t

⎡
⎣⎢

⎤
⎦⎥
dt

t
∫ −

W 2(x,t )∇S(x,t ) ⋅∇R(x,T − t )[ ]dt
t
∫

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

                  (5)

where W1(x,t) and W2(x,t) are dynamic 
weights designed to optimally suppress 
the migration isochrones, and A(x) is 
the illumination term. Figure 1d is 
produced using equation 5; it illustrates 
how the migration isochrone has been 
removed while the low-wavenumber 
energy is preserved.

Figure 2a shows the conventional 
FWI gradient compared to the modi-
fied gradient from equation 5 (Figure 
2b) in a simple v(z) velocity model 
where velocity is linearly increasing 
with depth. Here, the modified gradi-
ent in equation 5 removes the migration 
operator (isochrone) but preserves all 
the low-wavenumber components as-
sociated with the diving waves (“ba-
nanas”) and backscattering (“rabbit 
ears”). To better illustrate the use of 
reflections in FWI, we use a simple 2D 
synthetic example consisting of five 
homogeneous layers, as shown in Figure 
3. The data has maximum offsets of 
4 km, so only precritical reflections are 

used in the inversion. The starting 
velocity model for FWI contained 
errors up to 100 m/s. The inversion was 
performed on a frequency band of 
3–5 Hz. Figures 3b and 3c show the 
results of the inversion using the con-
ventional FWI gradient as compared 
to our new FWI gradient. Results from 
the new gradient are accurate and do 
not suffer from the high-wavenumber 
artifacts observed on the conventional 
FWI update, which is dominated by 
the reflections as would be observed 
in a migrated image.

Stabilizing FWI solutions with 
regularization

With the improved FWI gradient 
introduced in the previous section, we 
move on to the practicalities of how to 
regularize the FWI problem and solu-
tions. As mentioned in the introduction, 
our approach to overcome such chal-
lenges uses a combination of total varia-
tion (TV) regularization (Guo and de 
Hoop, 2013) and the vertical hinge-loss 
asymmetric TV (Esser et al., 2015). 
This allows us to recover relatively 
complex velocity models, even when 
starting from a simple starting model.

Figure 2. Sensitivity kernels of a source-receiver pair in a model with a v(z) layer overlying a half-space: (a) 
conventional kernel and (b) dynamically weighted velocity kernel.

Figure 3. Five-layer synthetic model: (a) Difference between exact and starting model, and between the inverted 
and the initial velocity model using the (b) conventional and (c) new FWI gradients.
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The main advantage of the L1-TV regularization is that the 
sharp edges are well preserved while the artifacts and noise are 
efficiently removed during inversion. In other words, the L1-TV 
regularization pursues a sparse representation of the model in the 
space spanned by piecewise constant functions. Full-waveform 
inversion with L1 norm TV regularization can be formulated as 
the optimization problem

min
m

F m( )−u 2
2 +λ ∇m 1,                       (6)

where F is the modeling operator, m is the velocity model, u is 
the recorded data, and λ is the regularization parameter. The 
second term in equation 6 uses the L1 norm to pursue a sparse 
representation of the high-contrast boundaries of the model. The 
L1 norm can be calculated by using different approximations (e.g., 
Guitton and Symes, 2003). However, slow convergence has been 
observed when using those approximations to achieve a sparse 
solution. Our L1 norm implementation solves the slow convergence 
problem by using the split Bregman iterations. This method has 
proved efficient for solving L1 optimization problems, in particular 
for TV regularization as shown by Goldstein and Osher (2009). 
In their work, they showed that the optimization problem as 
expressed in equation 6 can be reformulated as

  min
m,d

F m( )−u 2
2 +λ d 1 +

γ
2
d −∇m − b 2

2 ,            (7)

where d = m is used as an expansion of the model space, and the 
auxiliary variable b is updated according to bk+1 = bk +∇m−dk+1. 
In the next section, we adapt this split Bregman algorithm to ac-
commodate the objective function with the steerable variation term.

The L1–TV norm regularization with constant regularization 
parameter (λ) treats all regions in the model with homogeneous 
isotropic weights. Ideally, by including additional constraints, we 
would like to add any prior physical information about the model 
to steer the solution in any direction. We call this novel method 
“steerable variation regularization.” Full-waveform inversion with 
steerable variation regularization can be formulated as the fol-
lowing optimization problem:

min
m

F m( )−u 2
2 + λ∇m 1 + ∇m ⋅P

Ω
∫ ,                (8)

where the steering field P is used to introduce any a priori knowl-
edge of the velocity model. The dot product of the gradient of the 
model and the direction indicated by P can be considered the 
changing rate of the model along the steering field. Without 
taking the absolute value, we not only can control the magnitude 
of  m (with the TV) but also guide its direction with the second 
regularization term. The steering field P plays a crucial role in our 
inversion algorithm and is updated during the FWI iterations. 
As initial value, we typically use pre-existing models such as a 
legacy velocity model or a starting model generated from 

conventional VMB. If limited a priori information is available, 
we are also able to use any preliminary seismic images, such as a 
sediment flood, for the purpose of an initial model. As this is 
available at early stages of the velocity model building workflow, 
it can be incorporated easily into our regularization strategy in 
the absence of a legacy model. 

To design the FWI workflow with steerable regularization, 
we follow a slightly modified multiscale approach, where the 
principle is to reconstruct the model’s high-contrast components 
in the first stages and then add the details in later iterations. To 
ensure convergence of FWI, we typically run many stages where 
we relaxed the regularization as necessary to define the high-
contrast events while preserving the high resolution in the sedi-
ments. Thus, it is preferable to choose a spatially variant regulariza-
tion parameter λ for the TV regularization. It provides the 
flexibility to target the area in which, based on the a priori infor-
mation, salt bodies may exist without tremendously increasing 
the inversion’s computational cost. With a spatially variant regu-
larization parameter, we can build the salt and refine the sediments 
at the same time without precise knowledge of the salt boundaries 
position. In that case, the salt does not necessarily need to be 
included in the initial model and rather can be used as a soft 
constraint in the regularization. The main reason behind this is 
that the synthetic data is sensitive with respect to the model, but 
the optimal regularization parameter is not. Hence, if we have 
inaccurate information on the salt boundaries, it might be prefer-
able to include that prior information in the regularization pa-
rameter rather than in the misfit term.

Examples
To illustrate the ability of our new FWI scheme to deal with 

large contrast media, we use a modified version of the BP 2004 
benchmark velocity model (shown in Figure 4a) (Billette and 
Brandsberg-Dahl, 2005). The model contains two salt bodies with 
unique characteristics (different velocity, size, and geometry). These 
properties promote better illumination, by the refracted/diving 
waves, of the “tooth” salt body to the right of the model than for 
the salt body to the left. The synthetic data was created with a 
minimum frequency of 3 Hz and a maximum offset of 12 km.

The starting velocity model for the FWI consists of an average 
v(z) gradient hung from the water bottom (Figure 4b). Note that 
the initial model does not contain any high-contrast velocity 
information, but, at the same time, it is not too far away from the 
true sediments velocities. Several stages were used to improve the 
convergence of the FWI and avoid local minima by starting at 
low frequencies and working up to higher frequencies. As our 
algorithm is implemented in the time domain, we use band-passed 
versions of the data as input, with consecutively increasing center 
frequencies of 5 Hz, 9 Hz, 12 Hz, 15 Hz, and 18 Hz. For a fair 
comparison, the same number of frequency bands and number of 
iterations were used for all the compared algorithms. For the FWI 
with TV regularization, a constant regularization parameter was 
applied with the same decay rate as in the steerable variation 
regularization scheme.

Figures 4c, 4d, and 4e show the inversion results with and 
without regularization. Figure 4c displays the result of FWI without 
regularization, Figure 4d shows the result of the FWI with TV 
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regularization and constant regularization parameter, and Figure 
4e shows our result when steerable regularization was used. Note 
how significant artifacts due to cycle skipping are observed in the 
result using conventional FWI. With TV regularization and a 
proper choice of the regularization parameter, the artifacts can be 
reduced and the result is improved, but the cycle skipping is still 
visible. Our FWI with steerable regularization obtains the best 
result by defining the top and bottom salt boundaries and the 
correct velocity of the sediments below salt. In the right side of 
the model, the conclusions from comparing the different regulariza-
tions are the same as the left side of the model, even though the 
starting velocity is farther away from the true model.

To further illustrate the impact of the new FWI gradient, we 
use field data from deepwater Gulf of Mexico (DeSoto Canyon). 
The data were acquired with dual-sensor streamers and with a 
maximum offset of 12 km. The FWI full-power frequency band 
was 3–7 Hz. No particular mutes or event selections were used, 
therefore all recorded data were employed during the inversion. 
Figure 5a shows an overlay of the initial velocity model on the 
seismic image. Figures 5b and 5c show the updates from the 

conventional and the new gradients, 
respectively. The update from the con-
ventional FWI is basically a mapping of 
the reflectivity or image into the velocity 
model, as is clear when compared to 
Figure 5a. When contrasted to the up-
date from FWI with the new gradient, 
we can observe longer wavelength up-
dates to the model to follow geology but 
that do not constitute a simple mapping 
of reflectivity into the velocity field. To 
further evaluate the model derived from 
the new gradient, we performed Kirch-
hoff depth migration. We observed that 
the new FWI velocity model improved 
the flatness of the offset gathers as shown 
in Figures 5a and 5b.

As our final example, we show re-
sults for a wide-azimuth dual-sensor 
data set acquired in deepwater Gulf of 
Mexico with maximum inline and 
crossline offsets of 7 km and 4.2 km, 
respectively. Here we deployed the new 
gradient combined with TV regulariza-
tion. No steering field was deployed in 
this case. Figures 6a and 6b show depth 
slices (1440 m and 1620 m) of the initial 
velocity model computed from reflection 
tomography. We perform FWI from 
this model using a frequency bandwidth 
of 3–5 Hz. For wavefield extrapolation, 
we use the pseudoanalytical method 
assuming a TTI medium with variable 
density. Figures 6c and 6d show the 
corresponding slices for the inverted 
model. As observed, the new gradient 
allows updates to resolve small-scale 

lateral heterogeneities in the velocity model, provided mainly by 
the presence of diving waves. At the same time, there is no migra-
tion imprint in the updates produced by the specular reflections 
as observed in the vertical profiles for the starting and the inverted 
velocity models (Figures 7a and 7b).

Summary
We have described a new robust solution for recovering the 

long-wavelength features of a velocity model in gradient-based 
FWI. The method uses reflected and transmitted wave modes to 
recover high-resolution velocity models. The new FWI gradient 
enables reliable velocity updates deeper than the maximum pen-
etration depth of diving waves and reduces the FWI dependency 
on recording ultralong offsets. Results from applying the new 
FWI gradient to field data show that we can combine both 
transmitted and reflected energy in a global FWI scheme to obtain 
high-resolution velocity models without imprint of the reflectivity 
on the velocity updates.

We also have presented a new FWI regularization scheme that 
can overcome the limitations of the inversion in the presence of 

Figure 4. Comparison of different regularization methods: (a) true model, (b) starting model, (c) FWI without 
regularization, (d) FWI with TV regularization, and (e) FWI with steerable variation regularization.
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Figure 5. 2D dual-sensor data example from deepwater Gulf of Mexico: (a) initial 
velocity model oerlaid by the seismic image, (b) conventional FWI model update, 
and (c) new FWI model update.

Figure 6. Results for the wide-azimuth Gulf of Mexico dual-sensor data example 
new FWI gradient and TV regularization.

Figure 7. Results for the wide-azimuth Gulf of Mexico dual-sensor data example 
using the dynamically weighted gradient. Vertical profiles for the (a) starting and 
the (b) inverted velocity model overlaid by the corresponding migrated stacked 
images. Horizontal distance is 18.6 km.

high-contrast geobodies and cycle skipping. It allows the use of a 
priori information about the earth model in the regularization as an 
extra term in the objective function. The implementation makes use 
of the split Bregman method, making it efficient and accurate. The 
numerical experiments demonstrate that our algorithm can deal with 
the challenges of the presence of high-contrast geobodies and cycle 
skipping. We show how the steering regularization terms can drive 
the solution out of local minima. However, it remains to be demon-
strated that this kind of constraint on the solution can help the inver-
sion deal with the same problems with field data. The errors in the 
physics used for the modeling operator and the noise in the data 
could demand the use of a better approximation of the wave propaga-
tion in the subsurface as well as better data-selection techniques. 

Corresponding author: Nizar.Chemingui@pgs.com
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