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Reverse time migration (RTM) is well suited for imaging 
steep dips in areas with high velocity contrast. In order 

to image steep dips at the correct positions, anisotropy has 
to be taken into account. In most cases, we can assume the 
symmetry axis is normal to the bedding, and model is tilted 
transverse isotropy or TTI. Figure 1 compares TTI Kirchhoff 
migration and TTI RTM images. We can see that the turning 
wave helps RTM image the steep salt flank and the steep dip 
truncations against the base of the salt.

In addition to its use as a final imaging tool, RTM is be-
ing used as a salt model building tool as well; this involves 
many RTM iterations. Figure 2 shows different possible salt 
geometries and their corresponding RTM images. In order 
to reduce the computation time, the redatuming concept 
was created. By using the redatuming technique, we can save 
the wavefield at a particular depth above the salt geometry 
that we would like to modify, and only remigrate the deeper 
portion with different salt models. We have also developed a 
delay image time (DIT) technique in our RTM algorithm. 
Conventional RTM calculates only one image at zero delay 
time between source wavefield and receiver wavefield. The 
DIT RTM will compute a sweep of images by applying the 
imaging conditions at different delay times. The DIT images 
can be used to obtain an optimal composite image and to 
update the velocity model, after analyzing and picking on a 
delay time field. Figure 3 shows the original RTM image, and 
the new RTM image by using the DIT updated velocity. 

Cluster computing is widely used to satisfy the require-
ments of computationally intensive applications. In a cluster 
environment, message passing interface (MPI) is one of the 
most well known programming tools, providing a set of well 
defined library functions for multinode parallel computing. 
However, MPI has one critical drawback for big produc-
tion jobs. If the job runs for days or weeks using hundreds 
of CPUs, there is a great chance of a program crash due to a 
hardware malfunction. If MPI is used, one node crash results 
in the crash of all other nodes. Because of this, people often 
avoid using MPI in their RTM programs. This article dis-
cusses an alternative solution using remote shell-based (rsh) 
multinode programming techniques for RTM.

Running many remote programs
To run a program on a remote host, we use the rsh command 
that uses two ports per program. The first port is used by the 
remote program for stdin and stdout while the second port 
is used by the remote program for stderr and as the signal 
delivery channel. The ports are continuously used even if the 
local processes are terminated, in which case the local rsh 
client becomes a zombie and stays that way until the remote 
program exits.

An experiment on a modern Linux (kernel 2.6.9) shows 
that the port number used by the rsh client starts from 1023 
and decreases to 824. Therefore, the total number of available 
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ports is 200. If the connection between the local rsh client 
and the remote program does not die quickly, the number of 
remote programs that can be run is limited to 100. In other 
words, the maximum number of computing nodes that can 
be started by a master node would be limited to 100.

The solution to this problem is making the remote 
program like a daemon running background. This can be 
achieved from the remote program side by closing all open 
files such as stdin, stdout, and stderr, forking a child pro-
cess, and exiting. The child process uses the setsid() system 
call to create a session and releases the existing signal delivery 
channel and takes care of the actual computation. Because 
the remote program has closed all files and the signal delivery 
channel, and has terminated itself, the connection between 
the local rsh client and the remote program is closed imme-
diately. The ports used in the rsh connection will be available 
to subsequent connections after some TCP close wait times.

Dynamic shot allocation
RTM is well suited for cluster computation. Suppose we have 
a cluster of N nodes, each having equal performance. If we 
were to process M shots, each node would be assigned M/N 
shots.

There are two types of allocation, static and dynamic. 
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Figure 1. (a) TTI Kirchhoff migration image. (b) TTI RTM image.
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master node and manage the shot list exclusively. If a remote 
node connects, the server assigns, one by one, a shot to the 
connecting node. This is a network program involving a serv-
er and multiple clients. However, network programming is 
error-prone and it is very difficult to write a reliable program, 
especially one operating in a heavily congested network envi-
ronment, which is often the case with large clusters.

One simple method is to split the seismic data into many 
small files, each containing just one shot gather, and put them 
in a common directory residing on an NFS-mounted parti-
tion. A computing node tries to move a file from the common 
directory to its own unique directory. If the operation fails 
(i.e., if the file is not found from the destination directory), 
we know that another process has taken the file. Note that the 
destination directory must reside on the same partition as the 
source directory because it exploits the atomic behavior of the 
Unix rename system call.

A cleaner method would be to use a shot database of mul-
tiple records each having six fields: shot number; seismic data 

In the static allocation, a node is assigned with a predefined 
number of shots. For example, the shots assigned on the first 
node would be 1, N+1, 2N+1 .., and the shots assigned on 
the second node would be 2, N+2, 2N+2 ..., and so on. As 
an aside, if the cluster is composed of different CPU mod-
els, the above scheme would not be acceptable. We would 
expect permanent failure of nodes during the computation. 
On the other hand, we might have a generous friend who 
would donate some idle nodes which could be added to the 
computation.

Dynamic allocation assigns a node one shot at a time. If a 
node finishes the shot, it contacts the master server to do the  
following four tasks: (1) read from the shot list; (2) mark the 
current shot as completed; (3) find the next shot to process 
and flag it as assigned; and (4) write to the shot list.

The tasks must occur sequentially, i.e., if a process is ex-
ecuting the tasks, no other processes are allowed to do the job. 
Otherwise a disaster occurs known as racing condition.

To protect against racing, a server could be run on the 

Figure 2. (a), (b), and (c): Different possible salt geometries. (d), (e), and (f ): Corresponding RTM images.
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file number; byte offset of the first trace of the shot gather 
within the data file; migration start time; migration end time; 
and the node number of the working node. 

The first three fields enable direct access of the first trace 
of a shot. The remaining three fields record the processing 
history.

During the setup, an initialization program examines the 
seismic data files and creates the shot database. For each avail-
able node, the program allocates a shot, runs the migration 
program on the node with that shot, records the start time, 
and updates the database.

Upon completion of the shot, a computing node contacts 
the master node and starts a program that reads the shot da-
tabase, marks the current shot as completed by entering the 
migration end time, fetches the next shot to be processed, 
and updates the database. To prevent racing condition, the 
program accesses the shot database exclusively using lockf(), a 
C library function, which is an interface to the fcntl() system 
call.

There are other Unix-locking techniques that exploit the 
atomic nature of some system calls on file operation. These 
techniques create and use an ancillary file, generally known as 
a dotfile or lockfile, as an indicator that the process has locked 
the resource. If the ancillary file exists, the database is locked 
by some other processes; otherwise the calling process must 
create the ancillary file to lock the database.

One frequently used technique exploits the fact that the 
link() system call fails if the name of the new link to the 
file already exists. The actual implementation first creates a 
unique temporary file whose name is generally derived from 
the process ID. Then an attempt is made to create a hard link 
having the new name of common ancillary lockfile against 

the already created temporary file. The link system call fails 
if the name of the new link already exists, and we know that 
another process has locked the database already.

Traditionally file locking over NFS especially using 
flock(), a BSD style system call, was unreliable. Therefore, 
the computing node would contact the master node to cre-
ate a remote process and would perform the lock operation 
remotely either using lockf() or an ancillary lockfile. Running 
a remote shell process with some arguments can be accom-
plished using the popen() C library call. Also, receiving the 
result can be accomplished by the fread() function using the 
file pointer returned by the popen() function.

Recovering from network congestion
A problem occurs if a large number of computing nodes try 
to contact the master node in a relatively short time window. 
If this happens, the cluster network would be congested. 
Also, there will be no more network ports available for a new 
remote shell connection. The situation is similar to an In-
ternet server which is under a distributed denial of service 
(DDoS) attack.

Unix serves remote shells with the help of an Internet su-
per server such as inetd or xinetd, and many Linux distribu-
tions including Red Hat use xinetd as the front-end server to 
rshd, the remote shell server program. If the rate of incom-
ing connections to a specific port exceeds a certain rate, the 
program xinetd disables service for a certain amount of time. 
This is controlled by the cps attribute of xinetd.conf(5), the 
Extended Internet Service Daemon configuration file. The 
cps attribute takes two arguments. The first argument is the 
number of maximum allowable incoming connections per 
second, and the second argument is the number of seconds to 
wait before re-enabling the service. The default for this setting 
is 50 incoming connections and a 10-s wait time, although 
the actual setting varies from Linux vendor to vendor.

Therefore, the client program must anticipate the network 
congestion, or the attempted connection to the master server 
could result in failure. If failure occurs, the client should retry 
after waiting a sufficiently long time.

Stacking the result
Each computing node maintains its own migration image 
on a local disk. Therefore the sum of these images yields the 
total migration image. The MPI provides a library function, 
MPI_Reduce(), exactly for this purpose. However, experi-
ence shows that IP-based MPI is almost useless on a large and 
busy cluster environment.

A practical solution to the busy and congested cluster 
environment would be using a multithreaded program. The 
program allocates an accumulating image buffer and creates 
a certain number of threads, each reading a partial migration 
image on the remote node and accumulating these data in the 
buffer. The racing condition is easily avoided using a set of 
mutexes. The stacking performance is relatively good because 
the relatively time consuming disk read operation is running 
in parallel. Also, the network transmission is more reliable 
than NFS because it is using TCP rather than UDP.

Figure 3. RTM images before (a) and after (b) DIT velocity update.
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Figure 4. RTM image of BP 2004 model.

Node performance
The last three fields of the shot database record contain the 
processing history (i.e., start time, end time, and the work-
ing node ID). Therefore, node-by-node performance can be 
easily produced. Table 1 shows the run time summary of an 
RTM job run on a small experimental Linux cluster. The 
input data used were from the BP 2004 2D model seismic 
data. The first column shows node ID (i.e., sequential node 
number). The second column shows the number of shots pro-
cessed by the node. The third column shows elapsed time in 
seconds. The last column shows the node performance (i.e., 
the average elapsed time in seconds per shot).

Based on the performance, the nodes can be grouped as 
in Table 2: group A = nodes 0–24; group B = nodes 25–31, 
and group C = nodes 32–37. Group A consists of two-socket 
single core Intel Nocona and Irwindale. Group B consists of 
two-socket dual-core Intel Woodcrest and Opteron 280/2216 
(four cores per node). Group C consists of two-socket quad-
core Intel Clovertown (eight cores per node).

Rank Shots Elapse time 
(s)

Performance 
(s/shot)

0 15 11,803 786.9
1 15 11,585 772.3
2 15 11,948 796.5
3 15 11,808 787.2
4 15 11,950 796.7
... … … …
20 15 11,540 769.3
21 15 11,758 783.9
22 15 11,648 776.5
23 15 11,715 781.0
24 15 11,614 774.3
25 52 11,397 219.2
26 53 11,427 215.6
27 52 11,345 218.2
28 53 11,543 217.8
29 49 11,455 233.8
30 51 11,496 225.4
31 51 11,495 225.4
32 102 11,367 111.4
33 102 11,350 111.3
34 103 11,433 111.0
35 103 11,418 110.9
36 102 11,390 111.7
37 100 11,379 113.8
total 1348 443,117 328.7

Table 1. BP 2004 RTM run time summary.

It is interesting that the performance gain of 3.5 from 
Group A to Group B exceeds the core ratio of 2.0. This means 

that the hardware performance has improved significantly be-
tween the models. The performance gain from Group B to 
Group C is approximately equal to the ratio of the number of 
cores. This suggests that this particular RTM software is still 
CPU hungry rather than being limited by input or output. 
Figure 4 shows the migration image.

Group nodes cores  perf  model 

A 0–24 2 787.5 Nocona/Irwindale
B 25–31 4 222.0  Woodcrest/Opteron
C 32–37 8 111.7 Colvertown

Table 2. RTM run time summary by group.

Summary and discussion
The production applications of RTM raise great challenges 
for cluster based computation. Remote shell-based multi-
node programming techniques have been discussed in detail 
for various stages of RTM programming. Significant im-
provement in performance has resulted from the application 
of these techniques. It makes production-scale RTM runs 
possible. 
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