
94 The Leading Edge January 2010

H i g h - p e r f o r m a n c e c o m p u t i n gH i g h - p e r f o r m a n c e c o m p u t i n g

�������	
����
�����	���	�������	����	����
����

Reverse time migration (RTM) is well suited for imaging
steep dips in areas with high velocity contrast. In order

to image steep dips at the correct positions, anisotropy has
to be taken into account. In most cases, we can assume the
symmetry axis is normal to the bedding, and model is tilted
transverse isotropy or TTI. Figure 1 compares TTI Kirchhoff
migration and TTI RTM images. We can see that the turning
wave helps RTM image the steep salt flank and the steep dip
truncations against the base of the salt.

In addition to its use as a final imaging tool, RTM is be-
ing used as a salt model building tool as well; this involves
many RTM iterations. Figure 2 shows different possible salt
geometries and their corresponding RTM images. In order
to reduce the computation time, the redatuming concept
was created. By using the redatuming technique, we can save
the wavefield at a particular depth above the salt geometry
that we would like to modify, and only remigrate the deeper
portion with different salt models. We have also developed a
delay image time (DIT) technique in our RTM algorithm.
Conventional RTM calculates only one image at zero delay
time between source wavefield and receiver wavefield. The
DIT RTM will compute a sweep of images by applying the
imaging conditions at different delay times. The DIT images
can be used to obtain an optimal composite image and to
update the velocity model, after analyzing and picking on a
delay time field. Figure 3 shows the original RTM image, and
the new RTM image by using the DIT updated velocity.

Cluster computing is widely used to satisfy the require-
ments of computationally intensive applications. In a cluster
environment, message passing interface (MPI) is one of the
most well known programming tools, providing a set of well
defined library functions for multinode parallel computing.
However, MPI has one critical drawback for big produc-
tion jobs. If the job runs for days or weeks using hundreds
of CPUs, there is a great chance of a program crash due to a
hardware malfunction. If MPI is used, one node crash results
in the crash of all other nodes. Because of this, people often
avoid using MPI in their RTM programs. This article dis-
cusses an alternative solution using remote shell-based (rsh)
multinode programming techniques for RTM.

Running many remote programs
To run a program on a remote host, we use the rsh command
that uses two ports per program. The first port is used by the
remote program for stdin and stdout while the second port
is used by the remote program for stderr and as the signal
delivery channel. The ports are continuously used even if the
local processes are terminated, in which case the local rsh
client becomes a zombie and stays that way until the remote
program exits.

An experiment on a modern Linux (kernel 2.6.9) shows
that the port number used by the rsh client starts from 1023
and decreases to 824. Therefore, the total number of available

SANG YONG SUH, ALEX YEH, BIN WANG, JUN CAI, KWANGJIN YOON, and ZHIMING LI, TGS-Nopec Geophysical Company

ports is 200. If the connection between the local rsh client
and the remote program does not die quickly, the number of
remote programs that can be run is limited to 100. In other
words, the maximum number of computing nodes that can
be started by a master node would be limited to 100.

The solution to this problem is making the remote
program like a daemon running background. This can be
achieved from the remote program side by closing all open
files such as stdin, stdout, and stderr, forking a child pro-
cess, and exiting. The child process uses the setsid() system
call to create a session and releases the existing signal delivery
channel and takes care of the actual computation. Because
the remote program has closed all files and the signal delivery
channel, and has terminated itself, the connection between
the local rsh client and the remote program is closed imme-
diately. The ports used in the rsh connection will be available
to subsequent connections after some TCP close wait times.

Dynamic shot allocation
RTM is well suited for cluster computation. Suppose we have
a cluster of N nodes, each having equal performance. If we
were to process M shots, each node would be assigned M/N
shots.

There are two types of allocation, static and dynamic.

SPECIAL SECTION: H i g h - p e r f o r m a n c e c o m p u t i n g

Figure 1. (a) TTI Kirchhoff migration image. (b) TTI RTM image.

Downloaded 15 Jan 2010 to 192.160.56.254. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

January 2010 The Leading Edge 95

H i g h - p e r f o r m a n c e c o m p u t i n g

master node and manage the shot list exclusively. If a remote
node connects, the server assigns, one by one, a shot to the
connecting node. This is a network program involving a serv-
er and multiple clients. However, network programming is
error-prone and it is very difficult to write a reliable program,
especially one operating in a heavily congested network envi-
ronment, which is often the case with large clusters.

One simple method is to split the seismic data into many
small files, each containing just one shot gather, and put them
in a common directory residing on an NFS-mounted parti-
tion. A computing node tries to move a file from the common
directory to its own unique directory. If the operation fails
(i.e., if the file is not found from the destination directory),
we know that another process has taken the file. Note that the
destination directory must reside on the same partition as the
source directory because it exploits the atomic behavior of the
Unix rename system call.

A cleaner method would be to use a shot database of mul-
tiple records each having six fields: shot number; seismic data

In the static allocation, a node is assigned with a predefined
number of shots. For example, the shots assigned on the first
node would be 1, N+1, 2N+1 .., and the shots assigned on
the second node would be 2, N+2, 2N+2 ..., and so on. As
an aside, if the cluster is composed of different CPU mod-
els, the above scheme would not be acceptable. We would
expect permanent failure of nodes during the computation.
On the other hand, we might have a generous friend who
would donate some idle nodes which could be added to the
computation.

Dynamic allocation assigns a node one shot at a time. If a
node finishes the shot, it contacts the master server to do the
following four tasks: (1) read from the shot list; (2) mark the
current shot as completed; (3) find the next shot to process
and flag it as assigned; and (4) write to the shot list.

The tasks must occur sequentially, i.e., if a process is ex-
ecuting the tasks, no other processes are allowed to do the job.
Otherwise a disaster occurs known as racing condition.

To protect against racing, a server could be run on the

Figure 2. (a), (b), and (c): Different possible salt geometries. (d), (e), and (f): Corresponding RTM images.

Downloaded 15 Jan 2010 to 192.160.56.254. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

96 The Leading Edge January 2010

H i g h - p e r f o r m a n c e c o m p u t i n g

file number; byte offset of the first trace of the shot gather
within the data file; migration start time; migration end time;
and the node number of the working node.

The first three fields enable direct access of the first trace
of a shot. The remaining three fields record the processing
history.

During the setup, an initialization program examines the
seismic data files and creates the shot database. For each avail-
able node, the program allocates a shot, runs the migration
program on the node with that shot, records the start time,
and updates the database.

Upon completion of the shot, a computing node contacts
the master node and starts a program that reads the shot da-
tabase, marks the current shot as completed by entering the
migration end time, fetches the next shot to be processed,
and updates the database. To prevent racing condition, the
program accesses the shot database exclusively using lockf(), a
C library function, which is an interface to the fcntl() system
call.

There are other Unix-locking techniques that exploit the
atomic nature of some system calls on file operation. These
techniques create and use an ancillary file, generally known as
a dotfile or lockfile, as an indicator that the process has locked
the resource. If the ancillary file exists, the database is locked
by some other processes; otherwise the calling process must
create the ancillary file to lock the database.

One frequently used technique exploits the fact that the
link() system call fails if the name of the new link to the
file already exists. The actual implementation first creates a
unique temporary file whose name is generally derived from
the process ID. Then an attempt is made to create a hard link
having the new name of common ancillary lockfile against

the already created temporary file. The link system call fails
if the name of the new link already exists, and we know that
another process has locked the database already.

Traditionally file locking over NFS especially using
flock(), a BSD style system call, was unreliable. Therefore,
the computing node would contact the master node to cre-
ate a remote process and would perform the lock operation
remotely either using lockf() or an ancillary lockfile. Running
a remote shell process with some arguments can be accom-
plished using the popen() C library call. Also, receiving the
result can be accomplished by the fread() function using the
file pointer returned by the popen() function.

Recovering from network congestion
A problem occurs if a large number of computing nodes try
to contact the master node in a relatively short time window.
If this happens, the cluster network would be congested.
Also, there will be no more network ports available for a new
remote shell connection. The situation is similar to an In-
ternet server which is under a distributed denial of service
(DDoS) attack.

Unix serves remote shells with the help of an Internet su-
per server such as inetd or xinetd, and many Linux distribu-
tions including Red Hat use xinetd as the front-end server to
rshd, the remote shell server program. If the rate of incom-
ing connections to a specific port exceeds a certain rate, the
program xinetd disables service for a certain amount of time.
This is controlled by the cps attribute of xinetd.conf(5), the
Extended Internet Service Daemon configuration file. The
cps attribute takes two arguments. The first argument is the
number of maximum allowable incoming connections per
second, and the second argument is the number of seconds to
wait before re-enabling the service. The default for this setting
is 50 incoming connections and a 10-s wait time, although
the actual setting varies from Linux vendor to vendor.

Therefore, the client program must anticipate the network
congestion, or the attempted connection to the master server
could result in failure. If failure occurs, the client should retry
after waiting a sufficiently long time.

Stacking the result
Each computing node maintains its own migration image
on a local disk. Therefore the sum of these images yields the
total migration image. The MPI provides a library function,
MPI_Reduce(), exactly for this purpose. However, experi-
ence shows that IP-based MPI is almost useless on a large and
busy cluster environment.

A practical solution to the busy and congested cluster
environment would be using a multithreaded program. The
program allocates an accumulating image buffer and creates
a certain number of threads, each reading a partial migration
image on the remote node and accumulating these data in the
buffer. The racing condition is easily avoided using a set of
mutexes. The stacking performance is relatively good because
the relatively time consuming disk read operation is running
in parallel. Also, the network transmission is more reliable
than NFS because it is using TCP rather than UDP.

Figure 3. RTM images before (a) and after (b) DIT velocity update.

Downloaded 15 Jan 2010 to 192.160.56.254. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

January 2010 The Leading Edge 97

H i g h - p e r f o r m a n c e c o m p u t i n g

Figure 4. RTM image of BP 2004 model.

Node performance
The last three fields of the shot database record contain the
processing history (i.e., start time, end time, and the work-
ing node ID). Therefore, node-by-node performance can be
easily produced. Table 1 shows the run time summary of an
RTM job run on a small experimental Linux cluster. The
input data used were from the BP 2004 2D model seismic
data. The first column shows node ID (i.e., sequential node
number). The second column shows the number of shots pro-
cessed by the node. The third column shows elapsed time in
seconds. The last column shows the node performance (i.e.,
the average elapsed time in seconds per shot).

Based on the performance, the nodes can be grouped as
in Table 2: group A = nodes 0–24; group B = nodes 25–31,
and group C = nodes 32–37. Group A consists of two-socket
single core Intel Nocona and Irwindale. Group B consists of
two-socket dual-core Intel Woodcrest and Opteron 280/2216
(four cores per node). Group C consists of two-socket quad-
core Intel Clovertown (eight cores per node).

Rank Shots Elapse time
(s)

Performance
(s/shot)

0 15 11,803 786.9
1 15 11,585 772.3
2 15 11,948 796.5
3 15 11,808 787.2
4 15 11,950 796.7
... … … …
20 15 11,540 769.3
21 15 11,758 783.9
22 15 11,648 776.5
23 15 11,715 781.0
24 15 11,614 774.3
25 52 11,397 219.2
26 53 11,427 215.6
27 52 11,345 218.2
28 53 11,543 217.8
29 49 11,455 233.8
30 51 11,496 225.4
31 51 11,495 225.4
32 102 11,367 111.4
33 102 11,350 111.3
34 103 11,433 111.0
35 103 11,418 110.9
36 102 11,390 111.7
37 100 11,379 113.8
total 1348 443,117 328.7

Table 1. BP 2004 RTM run time summary.

It is interesting that the performance gain of 3.5 from
Group A to Group B exceeds the core ratio of 2.0. This means

that the hardware performance has improved significantly be-
tween the models. The performance gain from Group B to
Group C is approximately equal to the ratio of the number of
cores. This suggests that this particular RTM software is still
CPU hungry rather than being limited by input or output.
Figure 4 shows the migration image.

Group nodes cores perf model

A 0–24 2 787.5 Nocona/Irwindale
B 25–31 4 222.0 Woodcrest/Opteron
C 32–37 8 111.7 Colvertown

Table 2. RTM run time summary by group.

Summary and discussion
The production applications of RTM raise great challenges
for cluster based computation. Remote shell-based multi-
node programming techniques have been discussed in detail
for various stages of RTM programming. Significant im-
provement in performance has resulted from the application
of these techniques. It makes production-scale RTM runs
possible.

References
Wang, B., C. Mason, K. Yoon, J. Ji, J. Cai, and S. Suh, 2009, Complex

salt model building using combination of interactive beam migra-
tion and localized RTM. SEG Expanded Abstracts, 28, 3680–3684.

Suh, S., and J. Cai, 2009. Reverse-time migration by fan filtering plus
wavefield decomposition. SEG Expanded Abstracts, 28, 2804–
2808.

Acknowledgments: We Thank TGS for permission to publish this
work. We also thank Will Whiteside, Chuck Mason, Yang He,
Xuening Ma, and Jean Ji for their valuable contributions toward
making this publication possible. Finally, we thank BP and Fred-
eric Billette for providing the BP 2004 model seismic data.

Corresponding author: sang.suh@tgsnopec.com

Downloaded 15 Jan 2010 to 192.160.56.254. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

