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Multiple reflections of seismic waves 
off of the seafloor have been keeping 
processing experts busy for years. To get 
a clear image of the subsurface, the true 
or primary seismic reflection must be 
preserved while the multiple reflections 
are removed—no easy task. Remov-
ing surface-related diffracted multiples 
in 3D seismic data is a challenging but 
necessary process to ensure accurate 
event placement.

One solution that has seen substantial 
progress is the use of predicted multiples 
to subtract the surface-related multiples. 
There have been some excellent techniques 
developed for predicting multiples, such 
as convolution-based or wavefield-extrap-
olation-based approaches. However, diffi-
culty stems from the fact that many exist-
ing techniques try to match the 
predicted multiples to the mul-
tiples in the data by either ad-
aptation or pattern matching. 
The issue with these prediction 
techniques is that they change 
the waveform of the predicted 
multiples, and this makes it 
very difficult to perfectly match 
the waveform of the predicted 
multiples to that of the mul-
tiples in the data. 

The R&D team at the au-
thors’ company realized that 
the matching process was alter-
ing the data in such a way that 
multiple subtraction was really 
not as reliable as it could be. 
Our solution was to develop a 
new technique for subtracting 
multiples without the match-
ing process that could provide 
more accurate results.

The new approach simplifies 
the multiple subtraction process 
by only using specific attributes 
of the predicted multiples, 

namely, dip and Average Absolute Value 
(AAV) along the dip. Instead of subtract-
ing adapted or matched multiples, the 
subtracted multiples are directly estimat-
ed from the data using the dip and AAV 
of the predicted multiples. This method 
eliminates the complicated matching step 
and provides a more accurate preservation 
of the primary reflections. We have tested 
this method on field data, and the results 
have been that the new method removed 
the multiples while preserving the prima-
ries better than conventional adaptive-
subtraction methods. 

MULTIPLE SUBTRACTION 
METHODS 

For background, the two common 
approaches for predicting multiples—

convolution-based prediction1 and 
wavefield-extrapolation-based predic-
tion2—were compared and well sum-
marized by Matsen and Xia.3  Both pre-
diction methods can accurately predict 
the timing of multiples. However, they 
are not ideal because they both alter the 
waveform of multiples.

Convolution-based approaches change 
the waveform by doubling the source 
wavelet spectrum in the frequency do-
main. In addition, interpolated traces are 
used to generate missing source-receiver 
pairs at the bounce points under the wa-
ter surface, and these traces may not have 
the same waveform as the missing traces.

Wavefield-extrapolation-based ap-
proaches also change the waveform; the 
only way to avoid this is to use a per-

fect reflectivity model, which 
is impractical to obtain. These 
waveform changes make sub-
tracting multiples in the data 
using the predicted multiples a 
challenging task. 

 One common approach 
for subtracting multiples using 
predicted multiples is adaptive 
subtraction.4 Adaptive subtrac-
tion tries to match the wave-
form of the predicted multi-
ples to that in the data in both 
amplitude and phase in a win-
dow. This technique provides 
cause for concern for a couple 
of reasons. First, if the window 
is small enough to include only 
multiples, the window may not 
be able to provide enough sta-
tistics to design a reliable filter. 
Conversely, if the window is 
large, it may contain primaries 
and other noise to limit the ad-
aptation process.

Another approach to mul-
tiple subtraction is based on 
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Fig. 1. The new method uses dip and Average Absolute Value 
of the data events and in the predicted multiples. Step 1 
determines whether a given sample in the data belongs to 
a primary or a multiple. Step 2 estimates the multiples and 
subtracts them. 
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pattern matching.5 One designs a Predic-
tion Error Filter (PEF) for the primary by 
deconvolving the PEF of the data with 
that of the predicted multiples. Compari-
son of adaptive subtraction versus pattern 
matching is well-documented by Abma 
et al.6 They report that a pattern-match-
ing technique also has its disadvantages. 
This method tends to leave much resid-
ual multiple energy and to weaken the 
primaries where the predicted multiples 
overlapped the primaries. 

NEW MULTIPLE SUBTRACTION 
METHOD 

The new approach developed by the 
authors avoids the matching process al-
together, which may have been the main 
source of difficulty in previous approach-
es. Figure 1 shows a flow diagram of the 
new method using the dip and AAV of 
the events in the data and in the predict-
ed multiples. It consists of two steps. The 
first step is to determine whether a given 
sample in the data belongs to a primary 
or a multiple. In the second step, the 
multiples in the data are estimated and 
subtracted from the data. 

 The dip scan is used to determine the 
dip of the events in the data that contains 
primaries, multiples and other noises. 
The dip scan is also used to determine 
the dip of the events in the predicted 
multiples. Next, the dip of the events in 
the data is compared with the dip of the 
events in the predicted multiples to sepa-
rate the dip of the primaries. 
If the dip at a sample point in 
the data is sufficiently different 
from the dip at the same sam-
ple location in the predicted 
multiples, the sample in the 
data is considered as a primary. 
On the other hand, if they are 
similar, then that sample in the 
data is considered a multiple. 
In addition, the AAV is an-
other criterion used to distin-
guish the primaries from the 
multiples, particularly when 
the dips are similar. Because 
of spurious noises in the pre-
dicted multiples, the dip at a 
sample point in the predicted 
multiples can be similar to that 
of the sample at the same lo-
cation in the data. However, 
the AAV along the dip in the 
predicted multiples should be 
much smaller than the AAV 
along the same dip in the data. 
In such cases, the sample is re-
garded as a primary. 

In the second step, assuming the 
waveform does not change much over 
a few traces, the primaries are estimated 
by averaging over a few traces along the 
dip. Then the estimated primaries are 
subtracted from the data to obtain a new 
data set that contains all the multiples. 
The new data set may also contain some 
residual primaries that were not properly 
accounted for in the previous estimation 

step. Using the dip of the events in the 
predicted multiples, the multiples from 
the new data set are estimated or recon-
structed by averaging over a few traces 
along the dip of the multiples. These esti-
mated multiples are subtracted from the 
data. Reconstructing the multiples using 
the data set from which most primaries 
are removed allows for more reliable esti-
mation of the multiples in the data. 

Note that, instead of generating a fil-
ter that will try to match the predicted 
multiples to the multiples in the data, 
the multiples in the data are directly de-
termined using the dip of the predicted 
multiples. In other words, the predicted 
multiples are used only to determine the 
dip of the multiples in the data. In doing 
so, one can avoid the step of matching 
the waveform of the predicted multiples 
to that of the multiples in the data. 

Figure 2a shows a common offset syn-
thetic data set that contains two flat, pri-
mary events and one primary diffraction 
indicated by P and white arrows and their 
multiples. Figure 2b displays the predict-
ed multiples using wavefield extrapola-
tion. Basically, a round trip was added to 
each depth in the migrated section (not 
shown). Note that the waveform of the 
predicted multiples is different from that 
of the data. By comparing the dip and 
AAV of the event in the data and those of 
the corresponding event in the predicted 
multiples, the primaries and their dip 
can be identified. The primaries are esti-

mated by averaging over a few 
traces along the dip in the data 
and subtracting them from the 
data. This step results in a new 
data set that mostly contains 
the multiples in the data. This 
data set is used to determine 
the multiples by averaging over 
a few traces along the dip of 
the multiples.

Using the data set that 
mostly contains the multiples 
provides an advantage over us-
ing the original data set for de-
termining the multiples. Since 
the original data includes the 
primaries or other noises, aver-
aging over a few traces along a 
multiple dip can be affected by 
the primaries or other noises. 
Figure 2c shows the estimated 
multiples that will be sub-
tracted from the data. Note 
that the waveform of the esti-
mated multiples is the same as 
the waveform of the multiples 
in the data. The white arrows 

Fig. 2. a) A common offset section, 
b) the predicted multiples and c) the 
reconstructed multiples.

Fig. 3. Synthetics: a) subtraction using the attributes of the 
predicted multiples, and b) conventional adaptive subtraction. 
Note the residual multiples (white arrow) and in the ellipse.
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in Fig. 2 indicate a) the multiple in the 
data, b) the predicted multiple and c) the 
reconstructed multiple.

Figure 3a shows the result of sub-
tracting the estimated multiples from 
the data. Note that all the multiples are 
subtracted properly. Figure 3b displays 
the result of adaptive subtraction. The 
flat primary where a diffracted multiple 
coincides with the primary in the data is 
distorted. There is a difference between 
the waveform of the predicted multiples 
and the waveform of the data where the 
primary and the diffracted multiple are 
overlapped. This difference prevents ad-
aptation from perfectly fitting only the 
multiples in the data. In addition, a no-
ticeable amount of multiple energy is left 
after adaptive subtraction (indicated by a 
white arrow). 

RESULTS
Figure 4a shows a common offset 

section of an inline from a marine 3D 
survey. The data were acquired using six 
streamers of 9-km length with a cable 
spacing of 160 m in the deepwater Gulf 
of Mexico. Because of severe feathering, 
each shot gather had to be regularized 
on a uniform grid with an inline spacing 
of 12.5 m and a crossline spacing of 80 
m. A preliminary depth-migrated cube 
was used as a reflectivity model and the 
corresponding velocity model was used 
as a velocity model for wavefield ex-
trapolation to predict the multiples. To 
prevent wraparound noises, the compu-
tation grid was extended. The nominal 
distance of the computation grid in the 
crossline direction was 4 km. Because 
of severe feathering, a computation grid 
wider than 8 km in the crossline direc-
tion was used for some shots. About 6 
km in the inline direction was also pad-
ded to avoid wraparound noises in the 
inline direction. 

The difference between 
the dip of the primaries and 
the dip of multiples is more 
evident in the common offset 
domain than in the common 
shot domain. For this reason, 
the method was applied in the 
common offset domain. Figure 
4b shows the predicted multi-
ples by extrapolating the shot 
gathers to a depth of 3,000 m, 
which is deeper than the deep-
est top of the salt, and back to 
the surface. This depth ensures 
that wave field extrapolation 
can predict both source- and 
receiver-side multiples bound-

ed by the water surface and any reflec-
tors down to the depth of 3,000 m. Note 
that the location of predicted multiples is 
precise, but the waveform of the predict-
ed multiples is quite different from the 
waveform of the multiples in the data. 

Figure 4c shows the result after sub-
tracting the multiples using the new 

method. Note that the first-order water-
bottom multiples and their peg legs are 
well suppressed. After subtracting the 
multiples, many steeply dipping primary 
events, as well as gently dipping reflec-
tions (see the events inside the ellipse), 
are well-retained, which were previously 
masked by high-amplitude multiples. 
For comparison, we used an adaptive 
subtraction method and displayed the 
results in Fig. 4d. The subtraction was 
somewhat mild to preserve the prima-
ries. As a result, a noticeable amount of 
multiple energy was left. Many steeply 
or gently dipping primary events are still 
masked by residual multiples. If the ad-
aptation parameters are tightened, more 
multiples can be subtracted, but some 
primaries could also be removed.

Shown in Fig. 5 are the spectra of the 
data shown in Fig. 4. The green curve 
shows the spectrum of the input data, 
the red curve shows the spectrum of the 
adaptive subtraction, and the brown 
curve shows the spectrum of the attri-
bute-based subtraction. The notch in 
the input spectrum is due to towing the 
streamer at a depth of 18 m to retain the 
low-frequency components of the data. 
These spectra illustrate the performance 
of the two subtraction techniques. The 
adaptive subtraction method failed to 
match the predicted multiples to the 
multiples in the data in the high-fre-
quency range. Basically, there was no 
subtraction of high-frequency compo-
nents. On the other hand, the attribute-
based subtraction worked well on all 
frequency components. 

CONCLUSIONS 
Adaptive subtraction approaches 

have been a main tool for subtracting 
the predicted multiples from the data. 
However, matching can be either too 
aggressive or too mild. When it is too 

aggressive, the multiples can 
be eliminated, but many pri-
maries are also partially re-
moved. On the other hand, 
when matching is too mild, 
most primaries are preserved, 
but much of the multiple en-
ergy also remains.

 A new method using the 
attributes of the data and pre-
dicted multiples avoids the 
matching of the predicted 
multiples to the multiples in 
the data. Instead, it uses the 
dip and AAV at each sample 
in the data and in the predict-
ed multiples to differentiate 

Fig. 4. a) Input, b) predicted multiples, 
c) attribute-based subtraction and d) 
adaptive subtraction.
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Fig. 5. Amplitude spectra of the data shown in Fig. 4.
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the primaries from the multiples. Once 
it is identified as a primary, the primary 
is estimated as an average of the samples 
along the dip over a few traces. 

These estimated primaries are sub-
tracted from the data to make a new 
data set, from which the multiples are 
estimated by summing over a few traces 
along the dip of the multiples.

The new method works well for most 
multiples except when a primary and 
a multiple overlap each other with the 
same dip and a similar AAV. For exam-
ple, a flat primary and the apex of dif-
fracted multiples can overlap with a flat 
dip. In such cases, one may determine 
the dip by scanning over a large number 
of traces such that the AAV of the pri-
mary will be much higher than that of 
the diffracted multiples. 

 The current tests on field data show 
favorable results for the new method; 
the multiples were removed and prima-
ries were preserved better than conven-
tional adaptive subtraction methods. 
The R&D team plans to continue im-
proving the methodology by exploring 
some other attributes, such as frequen-
cy, which could help further separate 
primaries from multiples. The team is 
exploring the possibility of combining 

this method with the traditional adap-
tive subtraction process. These new 
techniques will continue to be tested 
and eventually implemented, along 
with many other efficiency-improving 
methods for clarifying subsurface im-
ages. � WO
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