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Summary 
 
The massively parallel nature of Graphics Processing Units 
has made them an attractive platform for some 
computationally intensive algorithms. This article presents 
a method to run 3D Kirchhoff prestack depth migration on 
GPU-based clusters. Compared to a CPU only version of 
the same algorithm, the new approach delivers a 
significantly greater efficiency.  An actual production run 
with field data reveals the extent of the improvements. 
 
Introduction 
 
3D Kirchhoff prestack depth migration (KPSDM) is one of 
the most commonly used tools for processing seismic data. 
CPU-based KPSDM has been well used in production on 
CPU-clusters. Some algorithms like Reverse Time 
Migration (RTM), run preferentially on Graphics 
Processing Units (GPU) based clusters (Sun and Suh, 
2011). 
 
Investing in GPU-based clusters means more software 
needs to be efficiently converted in order to maximize 
hardware utilization and also decrease seismic processing 
costs. KPSDM seems to be a prime candidate for such a 
conversion. 
 
To date, most of the articles about porting Kirchhoff 
migration algorithms to GPU are in time domain (Panetta et 
al., 2009, Shi et al., 2009, Brouwer et al., 2011). This 
article first details the different phases of our KPSDM 
algorithm and the challenges we encountered. We then go 
through the different methods used to convert KPSDM to 
run efficiently in a production environment on GPU-based 
clusters. Finally, we show an example of such a run and the 
performance comparison with the CPU multi-threaded 
version of the same algorithm. 
 
KPSDM Algorithm 
 
The Kirchhoff migration can be characterized as the 
summation of the reflection amplitudes along the 
diffraction travel time curves to obtain the output images 
(Garabito et al., 2011). There are many different 
implementations of KPSDM but they usually have the 
following major steps in common: 
• Computing the travel time tables using ray-tracing and a 

velocity model 
• Preprocessing the input seismic traces 
• Migrating these data traces using the Kirchhoff 

algorithm 

• Post-processing and outputting the results 
 
In our algorithm, the travel time tables for the input shot 
and receiver locations are pre-computed using ray tracing. 
Then to migrate one input trace, the sequence of operations 
is: 
• Get the travel time tables for the source and receiver 

locations  
• Preprocess the input seismic trace 
• Using the travel times, add a sample of the input trace 

data to the correct location in the output volume 
After all input traces have been migrated, the output 
volume is then post-processed and saved on the disk. 
Each of these steps has its own set of challenges. 
 
Challenges 
 
Compared to Kirchhoff time migration, KPSDM involves 
more Input / Output (I/O) from the system. Porting the ray-
tracing algorithm to GPU could not be done in an efficient 
manner because of the nature of the algorithm and because 
of memory limitations on the GPU. We could still compute 
the travel time tables directly on the GPU clusters using 
only the CPUs but that would make the GPU resources idle 
when some other program could use them. For this reason, 
the travel time data are first computed on CPU clusters and 
then transferred through the network to the GPU clusters.  
 
The input seismic data also need to be transferred to the 
GPU clusters to be migrated. The migration itself is 
computational so it is done using the GPU. Finally, the 
post-processing and writing out the results are mostly I/O 
bound so there is no advantage to port that part of the code 
to the GPU. 
 
The large part of I/O in KPSDM means we need to find a 
way to reduce its impact in the overall computation time. 
 
Reducing The I/O Footprint In KPSDM 
 
One of the first ideas to increase I/O bandwidth is to 
upgrade the hardware. This option can become 
prohibitively expensive both in time and money. So 
without any hardware change, we devised a procedure to 
greatly reduce the time it takes to transfer data. This 
procedure takes advantage of the fact that most Ethernet 
connections are full-duplex which means that they support 
simultaneous transmission of data in two directions. Instead 
of sending data sequentially from one location to several 
cluster nodes, we have each cluster node receive, transmit 
and process data at the same time as pictured in Figure 1. 
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GPU KPSDM 

 
Let’s compare this new approach to the one where data are 
consecutively copied from one node to many. Let T be the 
time needed to transfer one data packet, p the number of 
packets and n the number of cluster nodes. The total time it 
takes to transfer all data to all nodes for the one-to-many 
method is: 
 
 Total transfer time = T * p * n  
 
Whereas for the new method, it is: 
 
 Total transfer time = T * ( p + n – 1 ) 
  
As the number of cluster nodes increases, the new method 
becomes significantly faster than the one-to-many 
approach. 
 
To reduce the I/O footprint, we also compress the travel 
time tables and buffer them as needed. Input seismic data 
are also buffered. This way we can overlap data and travel 
times reads with the migration kernel which is executed on 
GPU. 
 
GPU Implementation 
 
Compared to current CPU, GPU have a lot more cores. 
Unfortunately, to leverage this parallelism, an existing 
CPU-only code needs to be modified. These changes are 
not straightforward. They require more knowledge about 
the architecture of GPU hardware than when implementing 
a CPU-only software. Some of the main requirements for 
good performance are memory alignment and access 
patterns (“CUDA Toolkit Documentation”).  So in our 
implementation, we make sure all the memory allocations 

and accesses are aligned to a warp (i.e. a group of 32 
threads). The entire output volume can be quite large so it 
is stored in the GPU global memory. In this volume, the 
data are stored in Z first then X, Y and offset order to 
promote data locality. We also store the input seismic 
traces in global memory. We tell the GPU to favor the use 
of the L1 cache to improve memory access speed. Since 
execution on a GPU is asynchronous with CPU execution, 
we overlap it with other operations as described in Figure 
2. 

 

There can be more than one migration thread depending on 
the number of GPU available on a particular cluster node. 
The program dynamically detects unused GPU and seizes 
them to increase the number of input seismic traces being 
migrated at a given time. This way we also improve the 
load balancing between jobs when more than one is run on 
a single node. The GPU kernel migrates one trace at a time. 
Inside this kernel, each thread is responsible for migrating a 
subset of a trace in the output 4D volume. 

Let now see how this implementation performed when 
migrating a real 3D dataset. 

Example 
 
The following data were used to run the GPU-based 
KPSDM on a single node using only one GPU card. It was 
then used to run the CPU-based version on a CPU cluster 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
Figure 2: Overlap of GPU and CPU operations  

Figure 1: Simultaneous transfer of data across cluster 
nodes 
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GPU KPSDM 

using 10 nodes with 4 cores each. The input seismic data 
consisted of 883,385 traces. The aperture was set at 10 Km. 
Volume dimensions for the migration output are: 

•  26 offsets 
•  Nx = 4,511, Ny = 8, Nz = 1,201 
•  dx = 25 m, dy = 30 m, dz = 10 m. 

 
Figure 3 shows the input velocity model used for both runs. 
 

 
The stack results of the GPU (see Figure 4) and of the CPU 
programs are almost identical. 
 

The run time for both programs is illustrated in Figure 5. 
 

 
For this example, the GPU-based 3D KPSDM was about 
twice as fast as the CPU-based version. In other words, one 
single GPU node was equivalent to 20 CPU nodes with 4 
cores each.  
 
Conclusions 
 
Our implementation of 3D KPSDM on a GPU-based 
cluster significantly outperforms the same algorithm run on 
a CPU-based cluster. It maximizes the use of I/O and 
computation resources for efficiency. This implementation 
is now being used in a production environment.  The 
advent of co-processors like GPU has greatly improved the 
computation throughput. On the other hand, it has also 
highlighted the limiting factor of I/O and memory 
bandwidth where further progress is needed. 
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Figure 3: Velocity model 
 

 
 

Figure 4: Stack result of GPU-based 3D KPSDM 
 

 
 
Figure 5: 3D KPSDM run time comparison between 10 
CPU-cluster nodes with 4 cores each and a single node 
with a single GPU card  
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