
Implementation of Kirchhoff prestack depth migration on GPU
Davide Teixeira*, Alex Yeh and Sampath Gajawada, TGS

Summary

The massively parallel nature of Graphics Processing Units
has made them an attractive platform for some
computationally intensive algorithms. This article presents
a method to run 3D Kirchhoff prestack depth migration on
GPU-based clusters. Compared to a CPU only version of
the same algorithm, the new approach delivers a
significantly greater efficiency. An actual production run
with field data reveals the extent of the improvements.

Introduction

3D Kirchhoff prestack depth migration (KPSDM) is one of
the most commonly used tools for processing seismic data.
CPU-based KPSDM has been well used in production on
CPU-clusters. Some algorithms like Reverse Time
Migration (RTM), run preferentially on Graphics
Processing Units (GPU) based clusters (Sun and Suh,
2011).

Investing in GPU-based clusters means more software
needs to be efficiently converted in order to maximize
hardware utilization and also decrease seismic processing
costs. KPSDM seems to be a prime candidate for such a
conversion.

To date, most of the articles about porting Kirchhoff
migration algorithms to GPU are in time domain (Panetta et
al., 2009, Shi et al., 2009, Brouwer et al., 2011). This
article first details the different phases of our KPSDM
algorithm and the challenges we encountered. We then go
through the different methods used to convert KPSDM to
run efficiently in a production environment on GPU-based
clusters. Finally, we show an example of such a run and the
performance comparison with the CPU multi-threaded
version of the same algorithm.

KPSDM Algorithm

The Kirchhoff migration can be characterized as the
summation of the reflection amplitudes along the
diffraction travel time curves to obtain the output images
(Garabito et al., 2011). There are many different
implementations of KPSDM but they usually have the
following major steps in common:
• Computing the travel time tables using ray-tracing and a

velocity model
• Preprocessing the input seismic traces
• Migrating these data traces using the Kirchhoff

algorithm

• Post-processing and outputting the results

In our algorithm, the travel time tables for the input shot
and receiver locations are pre-computed using ray tracing.
Then to migrate one input trace, the sequence of operations
is:
• Get the travel time tables for the source and receiver

locations
• Preprocess the input seismic trace
• Using the travel times, add a sample of the input trace

data to the correct location in the output volume
After all input traces have been migrated, the output
volume is then post-processed and saved on the disk.
Each of these steps has its own set of challenges.

Challenges

Compared to Kirchhoff time migration, KPSDM involves
more Input / Output (I/O) from the system. Porting the ray-
tracing algorithm to GPU could not be done in an efficient
manner because of the nature of the algorithm and because
of memory limitations on the GPU. We could still compute
the travel time tables directly on the GPU clusters using
only the CPUs but that would make the GPU resources idle
when some other program could use them. For this reason,
the travel time data are first computed on CPU clusters and
then transferred through the network to the GPU clusters.

The input seismic data also need to be transferred to the
GPU clusters to be migrated. The migration itself is
computational so it is done using the GPU. Finally, the
post-processing and writing out the results are mostly I/O
bound so there is no advantage to port that part of the code
to the GPU.

The large part of I/O in KPSDM means we need to find a
way to reduce its impact in the overall computation time.

Reducing The I/O Footprint In KPSDM

One of the first ideas to increase I/O bandwidth is to
upgrade the hardware. This option can become
prohibitively expensive both in time and money. So
without any hardware change, we devised a procedure to
greatly reduce the time it takes to transfer data. This
procedure takes advantage of the fact that most Ethernet
connections are full-duplex which means that they support
simultaneous transmission of data in two directions. Instead
of sending data sequentially from one location to several
cluster nodes, we have each cluster node receive, transmit
and process data at the same time as pictured in Figure 1.

DOI http://dx.doi.org/10.1190/segam2013-0979.1© 2013 SEG
SEG Houston 2013 Annual Meeting Page 3683

D
ow

nl
oa

de
d

10
/0

9/
13

 to
 2

05
.1

96
.1

79
.2

38
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

GPU KPSDM

Let’s compare this new approach to the one where data are
consecutively copied from one node to many. Let T be the
time needed to transfer one data packet, p the number of
packets and n the number of cluster nodes. The total time it
takes to transfer all data to all nodes for the one-to-many
method is:

 Total transfer time = T * p * n

Whereas for the new method, it is:

 Total transfer time = T * (p + n – 1)

As the number of cluster nodes increases, the new method
becomes significantly faster than the one-to-many
approach.

To reduce the I/O footprint, we also compress the travel
time tables and buffer them as needed. Input seismic data
are also buffered. This way we can overlap data and travel
times reads with the migration kernel which is executed on
GPU.

GPU Implementation

Compared to current CPU, GPU have a lot more cores.
Unfortunately, to leverage this parallelism, an existing
CPU-only code needs to be modified. These changes are
not straightforward. They require more knowledge about
the architecture of GPU hardware than when implementing
a CPU-only software. Some of the main requirements for
good performance are memory alignment and access
patterns (“CUDA Toolkit Documentation”). So in our
implementation, we make sure all the memory allocations

and accesses are aligned to a warp (i.e. a group of 32
threads). The entire output volume can be quite large so it
is stored in the GPU global memory. In this volume, the
data are stored in Z first then X, Y and offset order to
promote data locality. We also store the input seismic
traces in global memory. We tell the GPU to favor the use
of the L1 cache to improve memory access speed. Since
execution on a GPU is asynchronous with CPU execution,
we overlap it with other operations as described in Figure
2.

There can be more than one migration thread depending on
the number of GPU available on a particular cluster node.
The program dynamically detects unused GPU and seizes
them to increase the number of input seismic traces being
migrated at a given time. This way we also improve the
load balancing between jobs when more than one is run on
a single node. The GPU kernel migrates one trace at a time.
Inside this kernel, each thread is responsible for migrating a
subset of a trace in the output 4D volume.

Let now see how this implementation performed when
migrating a real 3D dataset.

Example

The following data were used to run the GPU-based
KPSDM on a single node using only one GPU card. It was
then used to run the CPU-based version on a CPU cluster

Figure 2: Overlap of GPU and CPU operations

Figure 1: Simultaneous transfer of data across cluster
nodes

DOI http://dx.doi.org/10.1190/segam2013-0979.1© 2013 SEG
SEG Houston 2013 Annual Meeting Page 3684

D
ow

nl
oa

de
d

10
/0

9/
13

 to
 2

05
.1

96
.1

79
.2

38
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

GPU KPSDM

using 10 nodes with 4 cores each. The input seismic data
consisted of 883,385 traces. The aperture was set at 10 Km.
Volume dimensions for the migration output are:

• 26 offsets
• Nx = 4,511, Ny = 8, Nz = 1,201
• dx = 25 m, dy = 30 m, dz = 10 m.

Figure 3 shows the input velocity model used for both runs.

The stack results of the GPU (see Figure 4) and of the CPU
programs are almost identical.

The run time for both programs is illustrated in Figure 5.

For this example, the GPU-based 3D KPSDM was about
twice as fast as the CPU-based version. In other words, one
single GPU node was equivalent to 20 CPU nodes with 4
cores each.

Conclusions

Our implementation of 3D KPSDM on a GPU-based
cluster significantly outperforms the same algorithm run on
a CPU-based cluster. It maximizes the use of I/O and
computation resources for efficiency. This implementation
is now being used in a production environment. The
advent of co-processors like GPU has greatly improved the
computation throughput. On the other hand, it has also
highlighted the limiting factor of I/O and memory
bandwidth where further progress is needed.

Acknowledgements

The authors would like to thank Sang Suh and Jing Xie for
their input. We also thank Bin Wang, Laurie Geiger, Simon
Baldock and Chuck Mason for reviewing and proof-reading
this paper. Finally, we wish to thank TGS management for
the permission to publish this paper.

Figure 3: Velocity model

Figure 4: Stack result of GPU-based 3D KPSDM

Figure 5: 3D KPSDM run time comparison between 10
CPU-cluster nodes with 4 cores each and a single node
with a single GPU card

DOI http://dx.doi.org/10.1190/segam2013-0979.1© 2013 SEG
SEG Houston 2013 Annual Meeting Page 3685

D
ow

nl
oa

de
d

10
/0

9/
13

 to
 2

05
.1

96
.1

79
.2

38
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1190/segam2013-0979.1

EDITED REFERENCES
Note: This reference list is a copy-edited version of the reference list submitted by the author. Reference lists for the 2013
SEG Technical Program Expanded Abstracts have been copy edited so that references provided with the online metadata for
each paper will achieve a high degree of linking to cited sources that appear on the Web.

REFERENCES

Brouwer, W., V. Natoli and M. Lamont, 2011, A novel GPGPU approach to Kirchhoff time migration:
81st Annual International Meeting, SEG, Expanded Abstracts, 3465–3469.

CUDA Toolkit Documentation: http://docs.nvidia.com, accessed 3 April 2013.

Garabito, G. and P. Stoffa, 2011, Slowness-driven Kirchhoff prestack depth migration: Application in
synthetic OBS data: 81st Annual International Meeting, SEG, Expanded Abstracts, 3351–3355

Panetta , J., T. Teixeira, P. R. P. de Souza Filho, C. A. da Cunha Filho, D. Sotelo, F. M. Roxo da Motta, S.
S. Pinheiro, I. Pedrosa Junior, A. L. Romanelli Rosa, L. R. Monnerat, L. T. Carneiro, and C.H.B. de
Albrecht, 2009, Accelerating Kirchhoff migration by CPU and GPU cooperation: Proceedings of the
21st International Symposium on Computer Architecture and High Performance Computing, 26–32.

Shi, X., C. Li, X. Wang, and K. Li, 2009, A practical approach of curved ray prestack Kirchhoff time
migration on GPGPU, in Y. Dou, R. Gruber, and J. Joller, eds., Advanced parallel processing
technologies: Springer, 165–176.

Sun, X., and S. Suh, 2011, Maximizing throughput for high-performance TTI-RTM: From CPU-RTM to
GPU-RTM: 81st Annual International Meeting, SEG, Expanded Abstracts, 3179–3183.

DOI http://dx.doi.org/10.1190/segam2013-0979.1© 2013 SEG
SEG Houston 2013 Annual Meeting Page 3686

D
ow

nl
oa

de
d

10
/0

9/
13

 to
 2

05
.1

96
.1

79
.2

38
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

