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Summary 

 

In the implementation of TTI RTM, we meet stability 

problems and demands for speedup. Staggered Fourier first 

derivative and linear interpolation improves stability and 

accuracy. Areas with high gradients of the symmetry axis 

give rise to unstable numerical computations and make the 

wavefield blow up. Selective matching of anisotropy 

parameters helps to eliminate these areas. The acoustic TTI 

wave equation needs intensive computing. The finite 

difference method is more flexible than pseudo-spectral 

method. However, the pseudo-spectral method gives a 

more accurate solution than the finite difference method. 

Efficiency can be improved by combining pseudo-spectral 

and finite difference methods.  

 

Introduction 

 

Subsurface geologic properties are very complex. To obtain 

the correct subsurface seismic image, we need to 1) 

estimate accurate parameters, such as velocity, epsilon, 

delta, dip and azimuth, and 2) use migration algorithms 

which express wave phenomena properly in the media. In 

reverse time migration (RTM) (Baysal et al, 1983; 

Whitmore, 1983), the accuracy of the migrated image 

depends on how well the migration algorithm simulates real 

seismic wave propagation. Because most rocks have 

anisotropy and sediments have layer induced anisotropy 

(Thomsen, 1986), RTM needs to take anisotropy into 

account to obtain correct images. 

 

Alkhalifah (2000) derived a vertically transverse isotropic 

(VTI) acoustic wave equation by assuming zero shear wave 

vertical velocity and this equation provided an easy way to 

implement anisotropic RTM. Alkhalifah’s fourth-order VTI 

acoustic wave equation reduces computational cost and 

simulates P-wave propagation without separation of P and 

S waves. Zhou et al. (2006a) modified Alkhalifah’s fourth-

order equation to a second-order equation, which is easy to 

implement using the finite difference method. Based on the 

Alkhalifah’s approximation of zero shear wave vertical 

velocity, second-order tilted transverse isotropic (TTI) 

acoustic wave equations have been introduced (Zhou et al., 

2006b; Fletcher et al., 2009). 

 

Figure 1 shows the benefit of TTI RTM. Figure 1(a) and 

1(b) are 3D VTI and TTI RTM images, respectively, in 

Gulf of Mexico. The parameters including velocities are 

estimated independently in VTI and TTI media and then 

final RTMs have been run. TTI RTM gives better quality 

especially in deep steeply dipping events and subsalt areas. 

This comparison demonstrates that the process based on 

TTI media produces a better image than that on VTI media. 

 

TTI acoustic wave equations include second derivatives, 

coupled first derivatives and coefficients of dip or azimuth. 

Numerical computation of the coupled first derivative 

demands more computations and accurate implementation 

to avoid unstable or erroneous wave propagation. The 

pseudo spectral method (PSM) has the accuracy to 

calculate derivatives with about two grid points per 

wavelength (Kosloff et al., 1982; Fornberg, 1987). The 

finite difference method (FDM) is less accurate but more 

flexible than the pseudo-spectral method especially for 

domain decomposition. The FDM can get a solution faster 

than PSM for the same number of grid points. However, 

both are comparable considering the highest frequency they 

can handle. Efficiency can be improved by combining PSM 

and FDM. 

 

 
(a) 

 
(b) 

Figure 1. (a) VTI and (b) TTI RTM images in Gulf of Mexico. 
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Stability issue in acoustic TTI RTM  

 

A TTI acoustic wave equation based on the Alkhalifah’s 

zero shear wave vertical velocity is given as (Zhou et al., 

2006b; Fletcher et al., 2009). 
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, where  and  are dip and azimuth. Anisotropic acoustic 

wave equations derived from the approximation of zero 

shear wave vertical velocity produce diamond-shape 

artifacts, SV-waves, propagating from the source point 

(Grechka et al., 2004). Figure 2 shows these artifacts in the 

impulse response using equation (1) in the TTI medium 

specified by P-wave velocity vertical to the symmetric 

plane , dip  and Thomsen 

anisotropic coefficients , . These artifacts 

arise due to the anisotropy at the source point and are easy 

to remove by setting  around the source point 

(Duveneck et al., 2008).  

 

 
Figure 2. Impulse response using the TTI wave equation (1) and 

TTI medium , ,  and . 

 

During the numerical computation of wave propagation 

using equation (1), areas with high anisotropic parameter 

gradients give rise to unstable numerical computations that 

cause the wavefield to blow up. Dip  and azimuth , 

which are coefficients of derivative terms, are dominant 

sources of instability. Figure 3 shows a test of TTI RTM 

using BP TTI synthetic data and equation (1). Figure 3(a) is 

the dip of the model. Figure 3(b) and 3(c) are a forward 

modeling snapshot and RTM image which are 

contaminated with wavefield blow-up due to unstable 

computation. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) dip of BP TTI synthetic model, unstable (b) a forward 

modeling snapshot and (c) RTM image. 

 
To obtain a more correct RTM image, we need a stable and 

accurate wave propagator. Staggered grid computation of 

first derivatives in equation (1) helps to improve accuracy 

and stability. In PSM, staggered first derivative can be 

computed using the phase shift theorem (Correa et al., 

2002). The phase shift operator for half grid spacing is 

, where  is the grid spacing and k is 

the angular wavenumber  

(Bracewell, 1986). The staggered grid first derivative in k 

domain is given as  

 

    (2) 
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, where  is the wavefield at normal, or centered, grids 

in the k domain, which is defined by . 

Correa et al. (2002) showed that staggered odd-order and 

centered even-order Fourier derivatives are compact. For 

accurate implementation of the TTI acoustic wave equation 

(1), first and second derivatives are to be computed at 

staggered and centered grids, respectively. For the 

wavefield update to the next time step in equation (1), 

 can be interpolated into centered grids using 

FFT interpolation before or linear interpolation after the 

transform to the space domain. The impulse response in 

Figure 2 has been produced using the FFT interpolation in 

the wave number domain. FFT interpolation gives the exact 

solution for a periodic function. Clear diamond-shape 

artifacts in the impulse response demonstrate the accuracy 

of FFT interpolation. 

 

On the other hand, Figure 4 shows the TTI RTM image 

using linear interpolation after transform to the space 

domain. The artifacts in Figure 4 do not form clear 

diamond-shapes, which means that the linear interpolation 

is not as accurate as the FFT interpolation. Both impulse 

responses in Figure 2 and Figure 4 look very similar except 

the artifacts. Acoustic TTI RTM using FFT interpolation is 

accurate but not stable in heterogeneous media. Linear 

interpolation is less accurate but more stable than FFT 

interpolation in implementation of TTI RTM using 

equation (1). 

 

 
Figure 4. Impulse response using the TTI wave equation (1) with 

parameters of , ,  and . 

This TTI RTM image has been produced by linear interpolation 
after transform to space domain. 

 

Staggered grid first derivative and linear interpolation of 

the first derivative to normal grids improves accuracy and 

stability. These techniques provide stable wavefields in 

areas of mild variation in the symmetry axis. However, 

some spots of high symmetry axis gradient produce large 

instabilities, which cannot be handled with these 

techniques, and make wavefields blow up. Symmetric axis 

change brings about the unstable wavefield, but the 

instability is originated by anisotropy. In regions where 

wavefield instability can occur, the anisotropy can be taken 

off by following the method which sets  to suppress 

artifacts from the source point in an anisotropic medium. 

SV wavefront triplication can be suppressed by using small 

, where  and  are the P and S 

wave velocities along the symmetry axis (Tsvankin, 2001; 

Fletcher et al., 2009). Instead of large , we can make 

 around the spots of high symmetry axis gradient. 

Figure 5 is the plot of weighting coefficients determined by 

the gradient of the dip shown in Figure 3(a) for the 

selective anisotropic parameter matching. A weighting 

coefficient at a grid point is set to 1 if the symmetry axis 

gradient exceeds some threshold, otherwise it is 0. The 

threshold has been chosen empirically. 

 

 
Figure 5. Plot of weighting coefficients for selective anisotropic 
parameter matching. A coefficient becomes 1, black color, if the 

gradient of symmetry axis exceeds the empirically determined 

threshold. 

 
Figure 6 shows stable (a) a forward modeling snapshot and 

RTM images (b) of one shot gather and (c) all shot gathers. 

TTI RTM has been implemented using the staggered grid 

first derivative plus linear interpolation and the selective 

anisotropic matching techniques. Figure 7 is the TTI RTM 

image of the BP TTI synthetic dataset. 

 
Speed up issue in acoustic TTI RTM 

 

TTI acoustic wave equation in equation (1) demands 

intensive computation, more than five or six times the 

isotropic wave equation. High order FDM or PSM can 

reduce memory and computational cost with coarse grid 

spacing. FDM is more flexible than PSM. FDM can restrict 

computations within the zone between the first arriving 

wave fronts and the source point. FDM is easier than PSM 

to apply domain decomposition. However, PSM has the 

benefit that it can handle higher frequency than FDM at the 

same grid spacing. Empirically speaking, PSM can get an 

accurate numerical solution of the acoustic wave equation 

having  parameter only with about 2.3 grid points per 

wave length under the 4th order time integration scheme 

(Dablain, 1986). But high order FDM (Dablain, 1986; 

Holberg, 1987) needs more than 2.6 grid points for an 

accurate solution. 
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(a) 

 
(b) 

 
(c) 

Figure 6. Stable (a) a forward modeling snapshot and TTI RTM 

images using (b) one shot and (c) all shots of BPTTI data. 

 

In FDM, performance increases with the order of stencil up 

to about the 16th order. However, the performance of PSM 

depends on the FFT library. The CPU time of FFT is not 

linearly related to the length of FFT. To achieve the best 

performance, the FFT length has to be determined by 

scanning the CPU times of various FFT lengths. For a fixed 

size of volume, 3D FFT or 2D FFT are faster than 1D FFT. 

However, considering the nonlinear FFT performance and 

implementation efficiency, 1D FFT is more flexible and 

gives better performance than 2D or 3D FFTs.  

 

Subsurface velocity usually increases with depth and the 

grid spacing is determined by the minimum velocity and 

highest frequency. In case the fixed grid spacing is applied, 

PSM is suitable for low velocity areas and FDM can be 

applied to higher velocity areas. By combining PSM and 

high order FDM, we can further reduce the memory and 

CPU time. 

 

Conclusions 

 

The TTI acoustic wave equation is more unstable and 

expensive to solve than VTI or isotropic wave equations. 

Staggered grid first derivative plus linear interpolation 

improves accuracy and stability in the numerical solution. 

Areas of high symmetry axis gradient generating unstable 

wavefields can be erased by selective anisotropic parameter 

matching. High order FDM and PSM can speed up TTI 

RTM. The performance of TTI RTM can be further 

improved by combining FDM and PSM. 
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 Figure 7. TTI RTM image of BPTTI synthetic data. 
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