
Toward generalized models for machine-learning-assisted 
salt interpretation in the Gulf of Mexico

Abstract
Interpreting salt bodies in the Gulf of Mexico (GoM) can be 

complex due to various factors affecting the accuracy of automated 
techniques. Variability of salt structures, seismic acquisition 
parameters, and imaging algorithms can impact the resulting 
seismic image. These differences can result in variations in seismic 
resolution and texture, making it challenging to develop automated 
interpretation techniques that are accurate and reliable for identify-
ing salt bodies in the GoM. However, using seismic images with 
similar acquisition parameters and processing methods minimizes 
these differences and makes machine-learning (ML) models 
applicable. Utilizing nine data sets from the eastern GoM, a 
nine-fold cross-validation technique was applied to measure the 
generalization performance of the ML model. This method 
involves using one data set as the test set and the remaining eight 
for training and repeating the process for all subsets. We further 
applied an ensemble of the nine models to predict salt on a new 
unseen survey in Green Canyon. The study aimed to illustrate 
how salt variability and morphology in the GoM can impact the 
ability of the ML algorithm to predict salt bodies on unseen data. 

Introduction
Exploration for oil and gas in the Gulf of Mexico (GoM) has 

led to the development of innovative seismic acquisition, process-
ing, and interpretation techniques. One of the main factors driving 
technological advancements is the region’s varied and locally 
complex nature of the salt structure. Salt bodies in the eastern 
GoM have complex shapes, roughness, and varying depths due 
to a combination of factors related to their formation, tectonic 
setting, and subsequent evolution (Hudec et al., 2013). They 
typically are formed by the dissolution and evacuation of underlying 
salt layers. Common features include salt diapirs, walls, domes, 
plugs, and sheets. 

Refining the salt geometry in seismic processing projects is 
crucial to create a subsalt image. New data acquisition and process-
ing technologies such as ocean-bottom nodes (OBNs), low-fre-
quency sources, and full-waveform inversion make salt model 
building more data driven (Huang et al., 2020; Mao et al., 2020). 
When data cannot support it, accurately delineating salt bodies 
in production workflows requires considerable time and specialized 
geologic knowledge from interpreters. Due to project constraints, 
interpretation geologists typically pick salt boundaries on deci-
mated grids. When the image is of good quality, interpretation 
can be extended using 2D and 3D horizon autopickers. In contrast, 
interpolation and geologic knowledge are required to fill the gaps 
in poorly imaged areas. The industry has been experimenting with 
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machine-learning (ML) algorithms that promise automation of 
salt interpretation and reduced turnaround time for processing 
projects, but ML algorithms still need improvements to replicate 
how humans interpret complex salt bodies. 

Several elements must be improved for ML algorithms to be 
widely adopted in production projects. The usual local/interactive 
approach iteratively trains the ML models on subsets of a specific 
survey, with active feedback from an interpreter. While this may 
accelerate the interpretative task, it requires significant manual 
interpretation and cannot provide a fully automated workflow. 

More than 20,000 mi2 of training data were used in our 
experiments. This seismic coverage provides the diversity of salt 
structures required to train a generalizable ML model. Months 
of personnel investment in data collection, data engineering, and 
building ML infrastructure made it possible to train the models 
described in this study. After building a generalizable model, 
minimal effort should be required to update and improve as new 
data are incorporated. 

Can the complexity of salt allow ML salt segmentation to be 
generalizable? Using nine data sets with similar processing, vintage, 
and acquisition geometry, we minimized the irregularity imposed 
by the variables to create an explicit ML model for eastern GoM 
salt interpretation. We do not intend to answer whether an ML 
model can be generalized to the entire GoM. Rather, we want to 
isolate and analyze how salt bodies and their morphology could 
affect model generalization. 

Data overview
Three-dimensional seismic data from different vintages and 

acquisition geometries (narrow-azimuth streamers, wide-azi-
muth streamers, full-azimuth streamers, ocean-bottom cables, 
and OBNs) cover the GoM. We chose a subset of the data sets 
in the eastern GoM to sample data with salt bodies. The acquisi-
tion types used in this study are narrow-azimuth towed stream-
ers, except for survey 8, which was acquired with ocean-bottom 
cables. The final processing product includes reverse time 
migration in a common frequency band (up to 35 Hz), with 
data binned to common inline, crossline, and depth increments 
(20, 25, and 10 m). 

The labels for image segmentation are represented as a salt 
mask (the same size as the seismic image). Each pixel is assigned 
a value, indicating whether that pixel corresponds to salt. Creating 
these salt labels for supervised learning is a challenging task. 
Nevertheless, suitable-quality labels (human interpretation) can 
be obtained with data warehousing and lineage tracking infra-
structure. Figure 1 shows the location of the nine data sets used 
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in this study. A subset of each seismic survey has salt delineated 
by interpreters. These interpreter-picked horizons were converted 
into a binary mask, indicating the presence of salt in the volume. 
Figure 2 displays seismic images with superimposed labels from 
surveys 6 and 3. Note the difference between the morphology of 
the salt bodies from the two surveys. Figure 2a shows the mother 
or autochthonous salt, the Louann, which is the salt source for 
diapirism in the northern GoM (Andrews, 1960). 

Software and hardware infrastructure
Training a deep-learning (DL) model with hundreds of thou-

sands of training labels could present a significant computational 
challenge and cost. Our training and inference pipelines are 
designed to enable large-scale experimentation by leveraging 
scalability in both on-premises data centers and cloud resources. 
We store the seismic surveys in MDIO format (Sansal and 
Kainkaryam, 2022), a seismic format built using the open-source 
data storage library Zarr (Miles et al., 2020). MDIO is a chunked 
compressed f ile format for storing and manipulating 

multidimensional energy resource assessment data. MDIO simpli-
fies access to seismic data sets from on-premises and cloud object 
stores, making the process more efficient.

We also developed a distributed model training library, built 
on MDIO and PyTorch (Paszke et al., 2019), to perform data 
augmentations and to iteratively load image and label pairs for 
training ML models and inference. Our training library ensures 
that data loading is not a bottleneck for GPU utilization, which 
is critical for scaling DL models. It also uses optimization 
techniques for training efficiencies, such as mixed precision 
training (Micikevicius et al., 2017) and gradient accumulation. 
Vertex AI, an ML platform on Google Cloud Platform (Google, 
2023), enabled distributed training on multiple GPUs. By utiliz-
ing these tools in the cloud, we can efficiently train many ML 
models on large seismic data sets. All of our experiments ran 
on NVIDIA V100 GPUs with 5120 CUDA Cores, 640 Tensor 
Cores, 16 GB HBM2 memory, and a memory bandwidth of up 
to 900 GB/s. We utilize Tensor Cores using automatic mixed 
precision training.

Model architecture
The experiments described in this 

paper were run with LinkNet34 
(Chaurasia and Culurciello, 2017). 
LinkNet34 is an efficient convolutional 
neural network architecture for image 
segmentation tasks. It is built on the 
ResNet34 (He et al., 2016) backbone 
but features unique modifications such 
as 1 × 1 convolutions and upsampling 
layers that enhance resolution with 
fewer parameters. This also makes train-
ing and inference cost effective 
(Chaurasia and Culurciello, 2017).

We use an AdamW optimizer 
(Loshchilov and Hutter, 2017) with 
an initial learning rate of 0.001 and a 
learning rate scheduler that decays for 
every epoch. To optimize over the 
nondifferentiable quality metric, inter-
section over union (IoU), we utilize 
Lovasz loss (Berman et al., 2018) as a 

Figure 1. Location of the nine surveys from the eastern GoM used for training in the study. Survey 10 is a test survey that was 
not used in training. 

Figure 2. Examples of different salt morphology used in training from two surveys in a deeper to shallow-water setting. Human interpretation in red is superimposed on the seismic image. 
(a) Survey 3 exhibits complex structural salt displaying deformation and diapirism. (b) Survey 6 only shows shallow canopy salt. 
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also did well interpreting the salt flanks with no clear boundary, 
with an overall IoU of 0.921. Figure 3e shows several large salt 
structures. The mother salt was not accurately imaged; the model 
suggests adding more salt to the human interpretation. This 
could provide interpreters with additional scenarios. Lastly, 
Figure 3g displays two shallow and well-imaged salt diapirs. 
The model did exceptionally well, with an IoU of 0.971 for the 
entire survey listed in Table 1, delineating the salt boundary 
and reasonably approximating where the base could have been 
better imaged.

Survey 4 in Figure 3i showcases the outboard extent of our 
nine surveys. The salt body is structurally deformed and has limited 
diapirism compared to other surveys. Although inclusions are 
present, it contains vast amounts of well-imaged salt, and the 
model predicted it very well, with a survey IoU of 0.822. Figure 3k 
overall has good salt predictions (0.811 for the entire survey) but 
misses the thin salt in the leftmost structure. It does, however, 
pick up some of the salt remaining in the weld between the main 
two bodies, while the prediction on the rightmost salt body closely 
matches the human interpretation. These results demonstrate the 
model’s ability to provide a reliable automatic salt interpretation, 
which could be valuable for interpreters.

Figure 4 shows the results where the models did not perform 
as expected. We observed mixed results. It correctly predicts the 
shallow and deeper salt, as seen in Figure 4a but not in 4c, although 
these lines are from the same survey (survey 2). One potential 
reason for the misprediction in Figure 4d but not in 4b is the low 
reflectivity of the top salt when compared to Figure 4a. The model 
predictions failed on survey 5 and need better performance on 
survey 1. These surveys are from DeSoto Canyon and Lloyd Ridge, 
located on the eastern portion of the nine surveys. This area has 
more prominent carbonates than other regions of the eastern 
GoM. Carbonates have similar velocities to salt, producing equiva-
lent impedance contrasts with sediments. Survey 5 also has thin 
salt that was not present in the other surveys used for training. 

Figure 4e displays a line from survey 1 with a sharp impedance 
contrast at a depth of approximately 6 km. The top salts near this 
boundary are predicted, but the deeper salt is not. One possible 
reason for not predicting deep salt is the abundance of deep reflectiv-
ity in this survey, which was absent in the eight surveys used for 
training. We also observed scaling differences in the data with 
increasing depth that could affect the model’s ability to discern salt. 
These differences in surveys 1 and 5 highlight the importance of 
capturing the data variety for training a production-scale model. 
This can lead to better generalization performance.

Applying ensemble learning to predict salt bodies for unseen data
To better understand the generalization capability of our nine 

models, we tested each of them on a new data set not seen during 
any stage of the earlier discussion (see Figure 1, survey 10). The 
salt in the region covered by survey 10 (Green Canyon/Walker 
Ridge, southwest of the study area) is more complicated, with 
multiple salt layers interspersed with other materials.

Ensemble learning is a common technique to increase the 
predictive power of DL models (Wang et al., 2020). An ensemble 
prediction for survey 10 was generated by averaging salt 

surrogate for IoU. We incorporate various image augmentation 
techniques in our data preprocessing pipeline including horizontal 
flipping, small and geologically sensible affine transformations, 
blurring, and multiscale Gaussian noise addition (Buslaev et al., 
2018). We prevent the introduction of artifacts at the edges of 
the augmentations by sampling larger patches than required for 
training. After applying augmentations, we crop the image back 
to the appropriate size expected by the model. Although we ran 
experiments with other model architectures, we only report results 
from LinkNet34 in this paper to illustrate that we can obtain 
generalized salt models with simple architectures. 

Methodology
Using nine seismic data sets (Figure 1), we conduct nine-fold 

cross validation to measure the generalization capability of our 
salt interpretation model. This method groups eight surveys into 
a training data set, holding out a single data set (the holdout 
survey) to test the prediction. We then train a salt interpretation 
model using the software infrastructure described earlier. Each 
survey participates as the holdout survey, training from scratch 
each time to avoid data leakage. The performance quantified by 
the IoU is evaluated on its corresponding holdout survey.

The IoU metric is employed in computer vision (Everingham 
et al., 2010) to assess the quality of predictions by computing the 
extent of overlap between the predicted segmentation mask and 
the ground-truth mask. In our case, results generated by the ML 
model are compared to human interpretation. The score ranges 
between 0 and 1, with 0 indicating no overlap and 1 indicating 
perfect alignment. Although the IoU metric offers a valuable 
indication of model performance, the accuracy of the human 
interpretation benchmark may fluctuate due to data quality, time 
constraints, and resource availability. A strategy such as label 
smoothing could alleviate such uncertainty in the labeling task 
(Müller et al., 2019).

Results in the eastern GoM
Table 1 shows the results of our nine-fold cross validation, 

including IoU scores for each holdout survey. Seven holdout data 
sets achieved IoU scores of 0.76 or higher, while the worst perform-
ing surveys (surveys 1 and 5) scored 0.26 or lower. Notably, these 
two surveys are at the eastern end of our study area (as shown in 
Figure 1), which has different salt morphology and rock properties 
than the other surveys.

Figure 3 shows a summary of the results of our experiment 
for a subset of seismic lines. Figures 3b, 3d, 3f, 3h, 3j, and 3l 
demonstrate good agreement (IoU scores of 0.76 or higher) 
between the predicted salt bodies and the human interpretation 
for surveys 3, 9, 7, 6, 4, and 8, respectively. Figure 3a shows the 
model’s accurate prediction of salt (right side), which was not 
in the labels in survey 3. This survey contains more autochthonous 
salt with a lower impedance contrast than surveys 6 and 9. The 
model predicted the base salt well, which is more homogenous 
but misses a small salt body (middle). This may be explained by 
the lack of a continuous reflection top salt at that location. 
Figure 3c shows several salt diapirs that vary in shape and size 
but have well-defined tops and, in most cases, bases. The model 
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Table 1. The IoU scores for each model predicted on their respective holdout surveys. These scores are calculated based on thresholded binarization of the probability volumes after 
inference. The thresholds are optimized to maximize IoU on the holdout data and are typically 0.4 across all surveys. 

Survey Survey 1 Survey 2 Survey 3 Survey 4 Survey 5 Survey 6 Survey 7 Survey 8 Survey 9

IoU 0.257 0.764 0.779 0.822 0.010 0.971 0.861 0.811 0.921

Figure 3. Comparison of labels (red) versus inference (blue) for six surveys (3, 9, 7, 6, 4, and 8) after the nine-fold cross-validation study. In general, the prediction in the holdout’s test sets 
was good. The salt geometries vary dramatically between surveys, ranging from simple well-imaged canopy salt to areas with complex feeder structures, overhangs, and inclusions.
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has the potential to generalize to unseen surveys. The results are 
a step toward generalization across the region. The IoU evaluation 
metric gave us a good idea of how the models perform at this task. 
However, the IoU score can be affected by the accuracy of the 
interpretation labels. The labels’ accuracy varied between surveys 
due to data quality, time constraints, and resource availability.

Hyperparameter tuning, modifications to the loss function, 
and more training data will bring us closer to a generalized model. 
Although, not explored in this study, additional augmentation 
techniques, such as AugMix by Hendrycks et al. (2019) and 
RandAugment by Cubuk et al. (2020), could help improve the 
accuracy of the salt interpretation. Further, self-supervised rep-
resentation learning using masked autoencoders (He et al., 2022), 
contrastive learning (Chen et al., 2020), and knowledge distillation 
(Hinton et al., 2015) can be used to improve the accuracy of 
automated salt interpretation.

probabilities from nine models. We chose a probability threshold 
based on our nine-fold analysis to compute the composite salt label 
mask. The composite threshold was selected by taking the opti-
mized thresholds’ median value from each cross-validation fold’s 
holdout data set. Figure 5 compares human interpretation and 
ML predictions for this survey. The prediction has an exceptionally 
low rate of false positives in the canopy salt but misses some of 
the deeper feeder structures. The aggregate model predicted the 
salt base similar to the interpreter, which was not well defined in 
the salt body near trace 600. This analysis shows that the ML salt 
model is close to generalizing throughout the eastern GoM.

Discussion 
This paper presents research on building regional-scale models 

for interpreting salt structure in the eastern GoM. Our goal was 
to show that a deep neural network trained on multiple surveys 

Figure 4. Comparison of labels (red) versus inference (blue) for two surveys after the nine-fold cross-validation study. (a and c) Two lines from survey 2 that highlight the differences in pick 
quality by the ML model within the same survey. (e) A line from survey 1 highlights the geologic differences within the survey.

Figure 5. Salt interpretation on a line from survey 10 in Green Canyon. Red is the human interpretation. Blue is the predicted salt made by the ensemble of the nine models.
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Conclusions
The complexity of salt bodies in the GoM can make it chal-

lenging to automate interpretation techniques. This study used a 
k-fold cross-validation technique to develop nine ML models for 
salt interpretation, using data sets from the eastern GoM with 
similar processing, vintage, and acquisition geometries. These 
models can predict salt with an IoU score of 0.76 or higher on 
most holdout data sets. Building a pretrained model for inference 
in new data sets can improve organizational interpretation effi-
ciency. We show that with an extensive set of training data and 
labels, data engineering, and distributed computing infrastructure, 
an ensemble of these models can do zero-shot prediction of salt 
on a tenth data set outside the study area, yielding promising 
results toward generalization. 
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