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Summary 
 
3D DAS VSP data were acquired in two active wells 
equipped with Electrical Submersible Pumps (ESPs) from 
the Big Foot field in the deep water, Gulf of Mexico. During 
the VSP survey, the wells remained producing most of the 
time with downhole ESPs operating at normal frequencies. 
Both seismic signals and ESP related noise were recorded by 
fiber optic cables installed inside the wellbore. In this paper, 
we compare DAS VSP data recorded with and without the 
ESP running and perform an analysis of the characteristics 
of flow noise activated by the ESP. We also use a machine 
learning (ML) algorithm based on supervised deep learning 
for attenuating ESP noise and present promising results. 
 
Introduction 
 
Distributed acoustic sensing (DAS) as an emerging 
technology for acquiring vertical seismic profiling (VSP) 
data (Mestayer et al., 2011) has earned a lot of attention in 
industry. In recent years, low-cost 3D/4D DAS VSP 
acquisitions using fiber optic cables as sensors are widely 
taking the place of high-cost conventional geophone VSP 
surveys, as they provide most of the value of a geophone 
VSP acquisition for 3D imaging and 4D monitoring in the 
vicinity of the well (Zhan et al., 2015; Mateeva et al., 2017). 
Most importantly, DAS VSP surveys can be conducted in 
active wells without any well intervention or production 
interruption, which further improves the cost effectiveness 
and acquisition flexibility.  
 
Over the last five years, numerous 3D and 4D DAS VSP 
datasets were collected in active producer or injector wells 
in several fields by different operators. The noise levels of 
these data are higher compared to DAS data acquired in a 
shut-in well due to noise from in-well fluid flow. Although 
the unwanted flow noise recorded by DAS VSP degrades the 
quality of the desired seismic signal, it has been shown that 
after adequate processing, 3D and 4D DAS can provide 
useful images from fiber optic cables recording in flowing 
wells (Kiyashchenko et al., 2019; Zhan and Nahm, 2020). 
 
Our literature investigation showed previous DAS VSP data 
were acquired either on quiet wells or natural-flowing wells. 
This paper describes DAS VSP field data acquired on one of 
two Electrical Submersible Pump (ESP) lifted wells from the 
Big Foot field in Gulf of Mexico. To our knowledge, this 
was the first DAS VSP acquisition in wells with the ESP 
running. This paper also presents how the ESP-related flow 
noise were analyzed for understanding the noise 
characteristics, followed by noise removal using ML. 

Pre-survey Recording and Signal/Noise Analysis 
 
To ensure the quality of the downhole fiber optic cable for 
seismic recording, as well as to understand the production 
noise level, we acquired a few hours’ passive DAS data on 
the same production well in August 2021 prior to the seismic 
survey. The continuous data contains both background noise 
and flow noise without seismic. Figure 1 shows the DAS 
recording as passive monitoring of a production well and 
compares three representative flow states observed over the 
recording period.  

 
Figure 1:  DAS passive recording (10 s) of a production well. a) was 
recorded during quiet time when there was no flow in the well; b) 
and c) were recorded during flow time without and with the ESP 
running, respectively. The column on the right depicts well 
schematic and corresponding flow paths when the ESP is off or on. 
 
The fiber optic cable was strapped to the outside of the 
tubing with clamps, as shown in Figure 1. With no flow in 
the well (Figure 1a), the downhole fiber seems sensitive 
enough to detect weak ambient signals at a frequency as low 
as 0.2 Hz. They look like ocean noise that is commonly 
observed. Production noise (Figure 1b) due to natural flow 
in the wellbore demonstrates itself on a DAS record as 
repetitive low-frequency tube waves, which show both 
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upgoing and downgoing travel along the tubing. After the 
ESP was turned on, the downhole pressure was boosted and 
fluid below the ESP depth flowed in the annulus outside of 
the tubing. Strong high-frequency noise is seen at the ESP 
location on the DAS record shown in Figure 1c due to a 
pump running at ~44 Hz. Tube wave energy which correlates 
with the pump speed had also been boosted by 
approximately an order of magnitude. 
 
Time-frequency spectra of DAS noise data within a 60 s time 
window are shown in Figure 2. The background noise 
(Figure 2a) exhibits as low-frequency components (< 2 Hz), 
while the natural flow (Figure 2b) results in several mono 
frequency bands along the time axis with two pronounced 
peaks between 10 Hz and 20 Hz. The ESP flow noise also 
demonstrates morphological characteristics with the highest 
peak at the ESP running frequency (𝑓ாௌ௉  = 44 Hz in this 
case) and two other peaks at the corresponding harmonic 
frequency (2 ∗ 𝑓ாௌ௉) and subharmonic frequency (𝑓ாௌ௉/2). 
 

 
Figure 2:  Spectrograms of DAS continuous data with no flow (a), 
natural flow (b), and ESP flow (c). 

 

 
Figure 3:  Comparison of natural flow noise and ESP flow noise 
relative to background noise with no flow. 

Figure 3 compares amplitude spectra between background 
noise and flow noise resulting from natural flow and ESP 
flow. At 20 Hz, the noise level of natural flow is ~20 dB 
above the background noise floor and it was further boosted 
by another 30 dB when the ESP was in operation. 
 
3D DAS VSP Acquisition and Field Data 
 
In October 2021, 3D DAS VSP data of two wells were 
acquired simultaneously using a 5040 cubic inch source 
vessel in the Big Foot field located in the deep water, Gulf 
of Mexico. The acquisition geometry is provided below in 
Figure 4a. Over 60,000 airgun shots were fired in a 19.5 km 
x 7.5 km N-S grid over the borehole region. With more than 
7,000 channels at every 1.02 m spatial sampling on each 
fiber with a gauge length of 10 m, a total of 75 TB DAS 
continuous data were recorded in two wells over a period of 
3.5 weeks. 
            

 
Figure 4:  a). Dual-well DAS VSP acquisition geometry. The shots 
are drawn as red lines and the two white line segments around the 
platform are fibers in two wells. b) and c) are two co-located shots 
from the middle of the yellow line which were acquired at separate 
times of the survey when the ESP was off and on.  
 
When the well is quiet with no flow, the Well-1 DAS data 
(Figure 4b) is of sufficient quality that first breaks, multiple 
arrivals, and converted waves are clearly seen on a raw shot 
located 2.5 km away from the wellhead. However, after the 
downhole ESP was turned on, the DAS data (Figure 4c)  
from the same well and same shot location was completely 
overridden by the strong noise generated by the ESP pump. 
The first arrivals become difficult to track as channels above 
the ESP were contaminated by ESP-induced tube waves 
traveling from the downhole ESP location upward to the 
seafloor. Channels below the ESP were severely affected by 
high energy flow noise due to direct interaction between the 
fiber and well fluid. 
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Figure 5: Signal and noise amplitude spectra of DAS channels above 
(a) and below (b) the ESP depth. The data windows for the signal 
calculations were chosen to only include VSP downgoing first 
arrivals. For the noise calculations, data in a window above the first 
arrivals were used. 
 
The frequency responses of noise (above the first arrivals) 
and seismic signals (downgoing first arrivals) are shown in 
Figure 5. When the ESP was off, the signal-to-noise-ratio 
(SNR) is up to 40 dB for channels above the ESP and 30 dB 
for channels below the ESP. In the case of the ESP running, 
flow noise demonstrates the broadband noise characteristics 
with a similar (above the ESP) or higher (below the ESP) 
level of amplitude compared to seismic signals. 
 
ESP noise attenuation via machine learning 
 
Traditional denoising is always difficult under extreme low 
SNR conditions, especially when the noise frequency 
overlaps with the signal’s frequency. To address the 
challenge of ESP noise attenuation presented in the Big Foot 
DAS data, we developed a machine learning (ML) workflow 
that uses a deep convolutional U-Net architecture to model 
the ESP noise first and then subtract it from the raw DAS 
data. The network consists of an encoder-decoder 
framework with symmetric convolutional-deconvolutional 
layers and skip connections (Figure 6). Details can be found 
in the paper by Valenciano et al. (2022). 
 
A pair of DAS input gathers (noise gathers and noise-free 
gathers) and the desired output (noise model) are provided 
in a typical supervised model training. Although it is easy to 
obtain input noise gathers (i.e., pure ESP noise) for ML, 
finding the associated noise-free gathers is often not trivial. 
Fortunately, we have acquired a few sail lines (5 out of 76) 
that are free of ESP noise when the pump was off during 
downtime of the well. A combination of noise-free gathers 

and pure ESP noise recorded from the field is used as an 
input to our ML model. Then we train the network to obtain 
an accurate ESP noise prediction model from this input data. 
 
According to the noise analysis, we found that the ESP noise 
level is a function of both pump speed and fiber channel 
depth. Since the pump speed didn’t change much in time, the 
level of the ESP noise mainly varies with channel depth. 
Therefore, we decided to work with data patches randomly 
extracted from common channel gathers instead of common 
shot gathers in the training dataset. Augmentation 
techniques such as scaling, changing polarity, and horizontal 
flipping have been applied to further enhance the dataset 
statistics. We have trained our model based on 5 ESP noise-
free lines and then applied it to all 76 shot lines. 
 
The results of the ML denoise are shown in Figure 7. A 
group of input DAS channel gathers are shown in Figure 7a. 
The noise pattern and amplitude vary considerably with 
channel depth mainly due to different coupling conditions 
between fiber and tubing along the wellbore. Figure 7b 
displays ESP noise modeled by ML, and denoised gathers 
with ESP noise effectively removed are shown in Figure 7c. 
The ML denoised gathers were also compared to field data 
recorded at the same channel/shot location but at a different 
time when the ESP was off (Figure 7d). The close similarity 
between the ML denoised data and the noise-free field data 
further demonstrates the performance and effectiveness of 
the presented ML denoising workflow. 
 
Conclusions 
 
Field DAS VSP data acquired from ESP lifted wells were 
presented. Noise analysis of passive DAS data with no flow, 
natural flow and ESP flow was carried out. The natural flow 
noise is 20 dB above the background noise level while the 
ESP flow noise is 30 dB louder than the natural flow noise. 
The comparison of DAS VSP data recorded in the same well 
with and without the ESP running showed that the 
overwhelming ESP noise significantly distorted seismic 
signals in terms of amplitude and frequency and made the 
subsequent seismic signal processing difficult. To tackle the 
ESP noise, a deep convolutional U-net architecture was 
adapted and a ML denoising workflow was developed. It 
resulted in encouraging denoised data which are comparable 
to field DAS data recorded without the ESP noise. 
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Figure 6:  Deep-learning ESP noise attenuation workflow. 

 
 
 
 
 

 
Figure 7:  Deep-learning ESP noise attenuation results. a) ML input: raw DAS channel gathers from shallow to deep which were all 
containminated by strong ESP noise. b) ML output: ESP noise model predicted from supervised deep learning. c) Denoised DAS channel gathers 
after ML noise prediction and subtraction. d) Field recorded ESP noise-free gathers of the same channels and shot locations acquired at a 
different time window when the ESP was off.   
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