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Summary 

 
Dense spatial sampling (~1m) and low signal-to-noise ratio 

(SNR) are typical features of distributed acoustic sensing 

(DAS) data. We have developed a wavelet stacking method 

to attenuate DAS noise without compromising data 

bandwidth. Wavelet stack consists of two steps, adaptive 

nonlinear iterative denoise and nonlinear stack.  Nonlinear 

iterative filtering is based on combination of 1D stationary 

wavelet transform, 2D complex wavelet transform (CWT) 

and normal moveout. It is non-stationary and adaptive to 

noise variation. Nonlinear stack combines two denoised 

gathers in the CWT domain in a predictable way for further 

SNR uplift without loss of the high frequency information of 

either input. Wavelet stack is used to produce partially 

stacked DAS channel gathers. Significant seismic resolution 

uplift in field DAS data is demonstrated using the newly 

developed wavelet stack compared to a conventional linear 

stack.  

  

Introduction 

 

Distributed acoustic sensing (DAS) has been popular to the 

exploration industry for its cost effective and novel way of 

turning the fiber-optic cable into a large seismic array (e.g., 

Zhan et. al., 2016), which can provide  valuable imaging and 

monitoring of fluid and pressure variations in the reservoir. 

Nowadays, more and more DAS VSP data are acquired on 

actively producing and injecting wellbores at a lower cost 

and without well intervention. However, downhole 

production or injection activities inevitably become noise 

sources, which travel along the wellbore and usually don’t 

contain any useful subsurface information. It is the noise for 

reflection seismology and can significantly degrade the 

quality of the image. This noise is high amplitude and 

broadband in the frequency or wavenumber domain. 

Additional challenges are strong variation of noise 

characteristics and spatial aliasing. Conventional methods, 

like deconvolution or Fourier transform based methods are 

less effective in addressing these noise problems because of 

the stationary statistics assumption and presence of aliased 

energy in the data (e.g., Yu et. al., 2002; Yu and Garossino, 

2004). Therefore, can we find an adaptive denoise workflow 

requiring minimum human interference to maximize SNR 

while keeping data bandwidth? 

 

Geophone arrays have been widely used in the industry to 

suppress the horizontal traveling waves by linear stacking to 

gain better SNR (e.g., Graig and Genter, 2006). Regone 

(1998) proposed Chebychev-weighted areal geophone 

arrays based on SNR ratios by applying a series of array 

filters with known attenuation levels to the raw data. Unlike 

surface seismic acquisition, DAS fibers are typically 

installed in boreholes, either cemented behind the casing or 

clamped on the production tubing. Therefore, there is no 

such flexibility to design the geophone array (e.g., Li, et. al., 

2013) to reduce direct arrival or waves traveling along 

wellbore which carry no information of subsurface we are 

interested in. 

 

Simple linear summation over the designed geophone array 

or any shape patch array has shown effective noise 

suppression (Craig and Genter, 2006), Similarly, a 

conventional way of reducing data volume prior to migration 

is to stack adjacent traces to generate a super trace. 

Mathematically speaking, linear stack is a lowpass filter and 

some high frequency information may be compromised 

(Jackson, 1989). Can we find a way to produce the super 

gather that has a similar or better SNR uplift to linear stack, 

but without compromising high frequencies?  

 

A fusion methodology integrates multiple images of one 

object from different sensors into a single composite image 

that preserves all the significant features of each input image 

(Pajares., et. al., 2004).  One of the widely used fusion 

methods is multiresolution wavelet decomposition-based 

scheme (e.g., Zhang and Blum, 1999). It shows that a simple 

nonlinear operation in the wavelet transform domain can 

combine diverse features from various sensors to produce 

enhanced temporal and spatial characteristics in the fused 

image. Can we apply the strategy of wavelet multi-resolution 

fusion technology to multi-sensor seismic data and reduce 

the data volume without compromising the resolution?   

 

In this paper, we first discuss the wavelet stack workflow 

and its two components: the nonlinear adaptive denoise 

workflow and the nonlinear stack. The stationary wavelet 

and complex wavelet transforms are then briefly reviewed 

so that the amplitude threshold filtering function can be 

introduced. The 3rd part discusses the procedure of the 

wavelet nonlinear stack and the conditions applied for better 

SNR without sacrificing data bandwidth. Finally, we 

demonstrate the effectiveness of this nonlinear denoise and 

stack method with field data examples and conclude with a 

discussion of some of the practical issues involved. 

  

Wavelet stack 

 
Finer sensor spacing in DAS acquisition is common because 

there is no additional cost (e.g., Li, et. al., 2013; Zhan et. al., 

2020). However, this high-density data may be not 

transformed to a high-quality image because of 

oversampling and limited aperture. It is common practice  to 
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DAS noise attenuation using wavelet stack 

decimate the raw data volume by linear stacking over 

adjacent traces to gain a better SNR while reducing the 

volume of data for migration (e.g., Yu and Zhan, 2017; Zhan 

and Nahm, 2020). Independent recordings on adjacent 

receivers have been verified by varying the noise pattern and 

near-offset signals. Therefore, SNR improvement from the 

linear stack process is real. Significant noise has been 

observed in the data, coming from the production, casing 

ringing, random acoustic bursts, and nearby undesired 

acoustic sources.  Next, we are going to discuss the two-step 

wavelet stack workflow: (1) a nonlinear iterative denoise 

workflow and (2) nonlinear combination of two input data in 

the CWT domain, to maximize SNR while preserving data 

bandwidth. 

 
The nonlinear iterative denoise workflow 

 
We prefer to model seismic data as nonstationary time and 

space wavefields and to use the local time-space domain as 

well as the frequency-wavenumber characteristics to design 

appropriate filters. We separate the signal from the noise in 

a multidimensional space created by a 1D or 2D wavelet 

transform. Normal moveout (NMO) is used to increase the 

dip differences between reflections and other unwanted 

energy (Yu et. al., 2017). 1D wavelet transform based 

filtering targets low frequency, outlier amplitude noise 

which could degrade the effectiveness of 2D filtering. An 

ideal noise attenuation technique should handle the variation 

in noise characteristics from shot to shot or receiver to 

receiver in a completely adaptive and automatic way. 

 
 

 

The procedure for amplitude threshold filtering in the 

wavelet transform domain involves the same three steps as 

filtering in other transform domains. First, the data are 

decomposed into wavelet space by wavelet transformation. 

Then, the portions of the data to be removed are identified 

and excluded from the inverse transform, which reconstructs 

the original data, but modified by the filter operation.  We 

define the forward wavelet transform as W, the inverse 

wavelet transform W-1, input data D and threshold filter 

function T, 1D or 2D filter procedure in Figure 1 can be 

expressed as 
 

𝑫′ = 𝑾−1{𝑻𝑾(𝑫)}            (1) 

 

where D’ is filtered result. For 1D wavelet filtering, W 

represents the stationary wavelet transform to avoid phase 

distortion introduced by the decimation at each scale in a 

standard discrete wavelet transform. For a more detailed 

discussion and the potential artifacts introduced during 

seismic filtering applications, see Yu and Whitcombe (2009) 

and Yu and Garossino (2004). The hreshold filter function T 

is defined as 

 

𝑻 = {
0  𝑤ℎ𝑒𝑛 𝑾(𝑫) > 𝜽 

1 𝑤ℎ𝑒𝑛 𝑾(𝑫) ≤  𝜽
                 (2) 

 

where 𝜽 is the wavelet coefficient threshold and a function 

of scale and time. Here T truncates amplitudes greater than 

𝜃 regardless of their scale and temporal position. For a more 

detailed discussion of T, please see Yu et. al. (2002). 

 

Effective suppression of noise requires a stable and robust 

difference between primary signal and the noise. 1D wavelet 

filtering has limitations; it doesn’t consider the spatial 

continuity of reflections and is less effective when dip is the 

main distinguisher. Of various kinds of multi-scale and 

multi-orientation higher dimensional wavelet transform, we 

have selected the 2D complex wavelet transform (CWT) 

(Kinsbury, 1999; Yu and Whitcombe, 2008; Yu et. al., 

2017).  

 

CWT is also called dual-tree complex wavelet transform, 

which is a complex-value extension of the discrete wavelet 

transform. It uses complex-valued filtering that decomposes 

the real signals into real and imaginary parts in the transform 

domain. The real and imaginary coefficients satisfy the 

Hilbert relation and are used to compute amplitude and local 

phase information. It has limited redundancy, which is 

independent of the number of scales (4:1 for 2D). This buys 

us the important property of translation-invariance, while 

requiring a relatively small memory compared to those in 

un-decimated forms. The run time varies as 4N2, which is 

faster than (NlogN)2 for 2D FFT (with N x N input array). 

Since no global transform (such as the Fourier transform) is 

involved, the CWT doesn’t spread the aliased energy, even 

if the input data contains aliasing. Finally, orientations, +75, 

+45, +15 degree, at each scale (Figure 2) in CWT provide 

good directionality. The smooth variation in its amplitude 

for each orientation (3rd row of Figure 2) suggests the CWT 

overcomes the checkerboard artifacts of the discrete wavelet 

transform (e.g., Yu and Whitcombe, 2009; Yu et. al., 2017). 

 

Figure 1: Nonlinear and iterative denoise workflow. 
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DAS noise attenuation using wavelet stack 

 For the 2D wavelet filter in our nonlinear iterative denoise 

workflow (Figure 1), W and W-1 in equation (1) represent 

forward and inverse 2D CWT respectively. T in equation (1) 

is replaced by T’, which defined as 
 

𝑻′ = {
1   𝑤ℎ𝑒𝑛 𝑾(𝑫)(𝒕, 𝒙, 𝒔, 𝒐, 𝒓) 𝜖 𝜽′ 
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  

                 (3) 

 

where 𝜽′ is signal set and data dependent. The 2D CWT 

transforms 2D input D (t, x) into a 5D array in the 2D CWT 

domain, in which vectors of t, x, s and o are time, space, 

scale and orientation respectively. r represents two 

components of real and imaginary parts. We will discuss 

how to determine T’ and  𝜽′  in the field data example 

section. 

  

The filter iterates (Figure 1) by the output of the 1st run 

becoming the input to the 2nd run, starting at NMO as 

indicated by the dashed line in Figure 1. The 1D wavelet 

filter is not included in the iterative process. 

 

 
 

  

 

 

 

 

Wavelet nonlinear stack 

  
The goal is to achieve a similar or better SNR as that of a 

linear stack without losing high frequency information.  

 

Wavelet stack transforms two input gathers to the CWT 

domain, and then combines two coefficients at each position 

in the CWT domain with the combined energy at the selected 

scales. matching the bigger one of the two inputs. The final 

step is to apply the inverse CWT to the combined 

coefficients. Suppose we have two input gathers, D1 and D2 

and their CWT counterparts, C1(t,x,s,o,r) and C2(t,x,s,o,r), 

a simple summation in the CWT domain is: 

 
 𝑪12(𝑡, 𝑥, 𝑠, 𝑜, 𝑟) = 0.5 ∗ (𝐶21(𝑡, 𝑥, 𝑠, 𝑜, 𝑟) + 𝐶1(𝑡, 𝑥, 𝑠, 𝑜, 𝑟))                  (4) 

 
where t, x, s, o and r are vectors and represent two 

dimensional variables, scale, orientation and the real or 

imaginary part respectively. Since CWT is a linear transform 

(Mallat, 1999), the inverse CWT of C12 equals the result of 

linear stack if no additional step is applied to C12. After SNR 

is gained in equation (4), we will apply following to C12 in 

the selected scales, s’, a subset of scale vector s, before the 

inverse CWT is applied. 

 

𝐶𝑠′
12 = 𝑓𝑠′𝐶

12                            (5) 

 

Where fs’ is a scaling factor applied to all coefficients at scale 

s’ and determined by 

 

𝑓𝑠′ = 𝑠𝑞𝑟𝑡 {
𝑄𝑠′

∑ (𝐶12(𝑠′))
2

𝑠′

}        (6) 

where ∑𝑠′  represents summation of coefficients at a given 

s’ regardless of other axes and 𝑄𝑠′ is 

 

𝑄𝑠′ = max (∑(𝐶1(𝑠′))
2

𝑠′

, ∑(𝐶2(𝑠′))
2

𝑠′

)        (7) 

 
For a given scale s’, 𝑄𝑠′ is a bigger value of energy 

summation of coefficients between C1 and C2. Therefore, 

𝑓𝑠′ is always greater or equal to 1. Operation (5) assures no 

high frequency loss after combination of two input gathers 

when selected scale s’ are normally scales 1 and 2 depending 

on input data bandwidth.  

 

Field data example 

 
Consider the two DAS field data common receiver gathers 

shown in Figure 3a. We see significant production and pump 

noise and a hint primary reflection. We apply the first 

iteration of our denoise workflow (Figure 1) using a constant 

NMO velocity of 6500 ft/s; T in equation 2 zeros coefficients 

greater than mean value of scale 5 and above; T’ in equation 

3 zeros everything at scale 1 and orientations +/-75 degrees. 

The result (Figure 3b) shows a huge noise reduction and 

clear hyperbolic primary events with no visible signal 

leakage in difference (Figure 3c). Spectral comparison 

(Figure 3d) demonstrates that the data characteristics and 

bandwidth are preserved in the filtered result, while strong 

low frequency production noise is suppressed.  

 

We further examine the result in common shot domain 

(Figure 4). Strong, long wavelength noise makes reflection 

signal almost invisible (Figure 4a). It is very difficult to 

separate the signal from noise in the shot domain because of 

a lack of clear and simple differences between them. After 

denoise in the common receiver domain (Figure 4b), SNR is 

dramatically improved, and the highlighted signals are 

revealed, and no damage of the signal is observed on the 

difference (Figure 4c).  

Figure 2: Complex wavelet basis. Orientations from 

left to right are -/+75, -/+45 and -/+15 degrees 

respectively. The top row is real, the middle row is 

imaginary and the bottom one is amplitude. 
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DAS noise attenuation using wavelet stack 

 
 

 

 

 

 

 
 

The iterative filtering in Figure 1 is then performed using the 

initial filtered result (Figure 3b) as an input to the 2D CWT 

filter. The threshold filter function T in equation 3 now zeros 

all coefficients on both scales 1 and 2 for +/-75 degree dips. 

The result (Figure 5a) shows further noise energy reduction, 

and no is signal found in the removed energy (Figure 5b).  

 
After nonlinear denoise (Figure 1), we have examined linear 

vs wavelet stack over a radius of 5m or neighboring 10 

receiver gathers. Compared to linear stack (Figure 6a), better 

SNR is clearly observed on the wavelet stack result (figure 

6b). The primary events highlighted by the dark blue and 

dark pink pointers are better identified in the wavelet stack 

(Figure 6b) than in the linear stack (Figure 6a). The spectral 

analysis (Figure 6c) confirms the aim that wavelet stack (red 

curve) has better high-frequency preservation.  
 

Discussion and conclusion 

 
We are confident to say yes to three questions posted in the 

introduction, SNR improvement without compromising 

bandwidth, finding a new way of stack than linear one for 

preserving high frequencies while keeping SNR, and 

wavelet multiresolution fusion strategy for integrating 

multiple seismic sensor images. The nonlinear, non-

stationary and multi-dimensional denoise workflow is 

integral part of wavelet stack. Field data examples have 

demonstrated the effectiveness of wavelet stack in SNR 

improvement and data bandwidth preservation over the 

conventional method.  
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for reviewing the paper Figure 5: (a) is result of the iterated filtering of Figure 1 

with input Figure 3b. (b) is the difference between input 

(Figure 3b) and the iterative result (a).   

  

 

Figure 3: (a) is two raw DAS receiver gathers. (b) is 

the result of nonlinear filtering in Figure 1. (c) is the 

difference between (a) and (b). (d) is spectrum 

comparison of input (a) and the result (b).   

  

 

Figure 4: (a) is two shot 

DAS gathers. (b) is the 

result of nonlinear 

filtering in Figure 1 

applied to common 

receiver gather (Figure 

3). (c) is the difference 

between (a) and (b).   

  

 

Figure 6: (a) is linear stack. 

(b) is wavelet stack via 

CWT. (c) is the spectrum 

comparison of (a) and (b).  
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