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Summary 

 

The Late Jurassic-Early Cretaceous Vaca Muerta (VM) Formation in 

the Neuquén Basin has served as an important source rock for many 

of the conventional oil and gas fields in Argentina.  With the interest 

in developing and exploiting the shale resources in the country, many 

companies there have undertaken the characterization of the VM 

Formation in terms of the elements of shale plays.  

 

Shale plays can be identified based on, amongst other characteristics, 

the total organic carbon (TOC), as better TOC leads to better 

production. However, there is no way of measuring it directly using 

seismic data, and it can only be estimated in an indirect way. 

Considering the influence of TOC on compressional, shear velocities 

and density, geoscientists have attempted to compute it using the 

linear or nonlinear relationship it may have with P-impedance. Given 

the uncertainty in using such a relationship for characterizing the VM 

formation, a different approach has been followed for characterizing 

it. In addition to P-impedance, gamma ray (GR) is another parameter 

of interest for characterizing the VM Formation as a linear 

relationship seems to exist between GR and TOC.  

 

In this study, using P-impedance and GR volumes, a Bayesian 

classification approach has been followed to obtain a reservoir model 

with different facies, based on TOC and its associated uncertainty. As 

the first step, we defined different facies based on the cutoff values 

for GR and P-impedance computed from well-log data. Having 

defined the different facies, Gaussian ellipses were used to capture 

the distribution of data in a crossplot of GR vs P-impedance. Next, 

2D probability density functions (PDF’s) were created from the 

ellipses for each of the facies. Combining these PDF’s with GR and 

P-impedance volumes, different facies were identified on the 3D 

volume. Poststack model-based inversion was used to compute the P-

impedance volume while a probabilistic neural network (PNN) 

approach was used to compute GR volume. Both derived P-

impedance and GR volumes which correlated well at blind wells on 

the 3D volume, and lent confidence in the characterization of VM 

Formation. 

 

Introduction 

 

The Neuquén Basin in Argentina was developed as a result of an 

extensional rifting in the Late Jurassic established between a back-arc 

to the west, associated to the Sudamerican Plate, and a passive 

margin to the east.  Subsequent deposition, thermal subsidence and 

structural evolution lead to the recognition of five different 

geographic areas (Figure 1) in the basin, which are the (1) thrust belt 

area to the west called the Malargüe-Agrio Foldbelt, (2) Northeast 

Platform, (3) Embayment in the center, (4) the Huincul Uplift 

adjoining the Embayment to the south, and (5) Picún Leufú sub-basin 

to the south west.  All these areas form the elongated northwest to 

southeast shape of the Neuquén Basin as seen in Figure 1.  

 

Based on the subsurface data from the electrical and acoustic log 

curves, mud logging data, as well as borehole images, extensive 

facies studies have been carried out in the Neuquén Basin.  It has 

been found that the VM Formation comprises a variety of lithologies 

that include organic-rich calcareous shales, marls, carbonates, 

calcareous sandstones and sandstones (Ortiz Sagasti et al., 2014; 

Fantin et al., 2014; Stinco et al., 2014; Sylwan, 2014). 

 

The present available descriptions of the VM Formation include the 

following:  It is composed of amorphous organic matter associated  

 

 

 

 

with marine plankton and equivalent to type II or IIS kerogen (Tissot 

et al., 1974).  With regard to thermal maturity, the maximum vitrinite 

reflectance, Ro, varies between 0.8 to 2%.  The TOC varies between 3 

to 8%, and found to be higher in the lower parts of VM Formation 

(Sylwan, 2014).  As studied by Wavrek et al. (1994), the Embayment 

area is inhabited by Type A-1 oil, which is light (30-45° API) and 

thermally mature.  Similarly, petrophysical analysis on log data 

shows that porosities vary between 4 and 12% in the VM Formation, 

with the lower intervals exhibiting porosities with 8 and 12 % and 

between 4 and 8% in the upper intervals (Di Benedetto et al., 2014). 

 

Theory/Method 

 

For a shale reservoir to become a successful shale resource play, the 

following characteristics need to be considered: (a) organic richness 

(TOC), (b) maturation (Ro%), (c) thickness, (d) gas-in-place, (e) 

permeability, (f) mineralogy, (g) brittleness, and (h) pore pressure.  In 

addition, the depth of the shale gas formation should also be 

considered as it will have a bearing on the economics of the gas 

recovery.  An optimum combination of these factors leads to 

favorable productivity (Chopra et al., 2012). 

 

Determination of TOC allows us to identify the source rocks. 

Borehole measurements such as well log curves, and geochemical 

analysis and measurements on cores and cuttings are the direct ways 

of estimating TOC. These methods are applicable only at well 

locations. However, our goal is to characterize the source rocks not 

vertically, but laterally, for selecting the location of horizontal wells 

in the area. Thus, seismic data play an important role in identifying 

the sweet spots as they are acquired over large areas. The 

determination of TOC directly from the seismic data is a difficult 

task, but can be attempted indirectly as we describe in this study. It is 

well known that TOC influences compressional velocity, shear 

velocity and density of the rock intervals. Thus, it should be possible 

to detect the changes in TOC from the seismic response. 

Additionally, there is evidence of a linear relationship between the 

uranium content in shale and its organic content. Consequently, a 

large GR response is expected for organic rich shale formations. 

Thus, we should be able to identify the source rocks with the help of 

GR response.   

 

As mentioned above, the P-impedance and GR are two important 

parameters for identifying the source rocks in terms of the TOC. 

While P-impedance can be determined by the different available 

methods of impedance inversion, there is no direct way of computing 

a GR volume from seismic data. Extended elastic impedance 

(Whitcombe et al., 2002) provides a way of computing it from 

seismic data, but for the case study at hand the lack of prestack data 

prevented us from using that approach. As only stacked data was 

available, a neural network approach was used for achieving our goal. 

Neural networks make it possible to predict suitable petrophysical 

properties such as porosity, GR, water saturation, etc. away from the 

well, using a nonlinear relationship between the seismic data and 

different  derived attributes with petrophysical properties (Chopra 

and Pruden, 2003; Minken and Castagna, 2003; Pramanik et al., 

2004; Singh et al., 2007; Calderon and Castagna, 2007). 

 

Characterization of VM formation 

 

A feasibility study was taken up for characterization of the VM 

Formation with the use of stacked seismic data along with the 
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TOC characterization of Vaca Mureta shale with post-stack seismic data 

 

 

 

available well log curves and geochemical data. By using the TOC 

values from geochemical analysis of source rock cutting samples, and 

the acoustic impedance from well log data, Løseth et al. (2011) had 

demonstrated that the acoustic impedance decreases nonlinearly with 

increasing TOC percent.  This relationship was then used to 

transform a seismic acoustic impedance data volume into a TOC 

volume. With this in mind and using similar data, we cross-plotted P-

impedance and TOC to see if any relationship existed between these 

two attributes.  This crossplot is shown in Figure 2 and it appears that 

both, a linear or a nonlinear curve could be a reasonable fit to the data 

points (as indicated).  But the important point to note is that 

whichever relationship is used, the high TOC intervals will remain 

underestimated both cases. This is a limitation of the Løseth et al. 

approach. Predicting TOC only based on such an approach would 

have an inherent uncertainty and so was not considered advisable.  

 

Given the fact that the GR response is related to organic richness, it 

was used to color-code the crossplot and as seen in Figure 2, a better 

correlation of high GR with high TOC is noticed. We also 

crossplotted P-impedance against GR and color coded it with TOC as 

shown in Figure 3. As high values of both TOC and GR are the 

characteristics of better quality shale play, we enclosed such points 

on the crossplot with a red polygon and back projected them to the 

well log curves shown in the right panel of Figure 3. We notice that 

most of the points enclosed in the red polygon are coming from the 

deeper reservoir zone as expected suggesting that the P-impedance 

and GR can be used in combination to differentiate between the 

deeper and shallower parts of the reservoir. However, such 

differentiation was not possible based on the TOC estimated from the 

P-impedance using a linear/nonlinear relationship. Even if 

differentiation is possible, the uncertainty would still exist in terms of 

quality of the shale.  

 

As we are attempting to characterize the VM shale reservoir from 

seismic data, it is possible that different models that we derive will 

have the same seismic response.  Of course some of these models 

will be more probable than others, which we could term as being 

realistic.  Consequently, we followed an approach that accounts for 

the uncertainties associated with the reservoir characterization of VM 

formation.  This work follows the Bayesian classification approach 

and provides a facies model reflecting the quality of the shale and a 

related uncertainty analysis. 

 

To execute the Bayesian approach, different facies were defined 

based on the cutoff values of GR and P-impedance. Armed with the 

facies information, probability distributions for each facies were 

generated using Gaussian ellipses. These ellipses are shown in Figure 

4 where three facies are defined in green (facies1), dark green 

(facies2) and red (facies3) colors. Based on the P-impedance and GR 

values, the quality of shale play must increase from red to green 

color. Observing the defined facies on the well log panel, it was 

concluded that quality of the VM formation increases with depth 

which is reasonable, based on the known geological history.  

 

Having gained confidence in characterizing the VM formation based 

on the well log curves, we turned to deriving the seismic P-

impedance and GR volumes. For computing P-impedance, stacked 

seismic data was first conditioned in terms of enhancing the S/N 

ratio. A low-frequency model was created using 5 of the 8 wells, 

keeping the other three as blind wells.  After observing a good 

correlation at the blind wells, model-based inversion was used to 

invert the seismic data.  The routine QCs were performed in the  

 

 

exercise that included inversion analysis at well locations, overlay of 

acoustic impedance logs (filtered to the seismic bandwidth) on the 

acoustic impedance sections, and crossplotting the predicted and 

actual acoustic impedance values at well locations.  When we found 

all these results encouraging, we proceeded with the inversion of the 

complete volume. An arbitrary profile passing through the wells was 

extracted from the inverted impedance volume and is shown in 

Figure 5. A good match between the inverted and measured 

impedance is noted, which provided the confidence in the inversion 

process used. 

 

For computing the GR volume, multiattribute regression and PNN 

were used. The detailed theory and workflow on PNN can be found 

in Hampson et al. (2001), but it involves some training and validation 

steps. Figure 6 shows the crossplot of the actual and predicted GR 

response at different well locations, where a correlation of 95% is 

seen. Validation correlation between the actual and predicted GR logs 

is shown in Figure 7, and again a good correlation is seen.  

 

Using the probability density function of each facies generated earlier 

from well log data analysis, and inverted P-impedance and GR 

volumes, Bayesian classification generated the facies volume and 

probability volume of each facies. Figure 8 shows an arbitrary line 

extracted from the facies volume and passing through three wells 

(that have TOC measurements from cores). We find that the quality 

of the shale reservoir is better in the lower part of the VM formation 

and also the thickness of facies 1 (green) increases from the 

shallower part to the deeper part of the interval, as expected from the 

geological information. A similar section extracted from the 

probability volume for facies 1 is shown in Figure 9. The color 

scheme represents probability of this facies, with brown color 

representing higher probability of occurrence of facies 1. In a similar 

way, the probability distribution of other facies can be extracted. For 

detecting the probable sweet spots horizon slices were extracted from 

the facies volume at different levels. Figure 10 shows one such 

horizon slice extracted 8 ms above the base of reservoir, where facies 

1 seems to dominate the display. Finally, in Figure 11 we show a map 

depicting the probability of occurrence of facies 1. The hot colors on 

this map indicate zones where the probability of occurrence of facies 

1 is 85% and above. As facies 1 corresponds to high TOC, these 

zones were treated as sweet spots. This map correlated well at the 

well locations, which enhanced our confidence in the results. Similar 

analyses were carried out for other intervals exhibiting different 

facies. 

 

 

Conclusions 

 

Determination of TOC in shale resource reservoirs is a desirable goal 

in most projects carried out for characterization of unconventional 

reservoirs. TOC calculations based on linear or non-linear 

relationships between acoustic impedance from log data and TOC 

values could lead to uncertainty and was not found suitable for use in 

the characterization of the VM Formation. The application of 

poststack model-based P-impedance, and a GR volume derived using 

PNN, coupled by the Bayesian classification approach, provided a 

useful workflow for defining different facies in the VM Formation, 

and hence the quality of the shale.  This workflow has the potential to 

be successfully applied to other shale plays around the world. 
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Figure1. Location map and 

morphostructural features 

of Neuquén Basin. (After 
Claudio, 2014) 

 

Figure2. Crossplot of 

measured P-impedance vs 
TOC color-coded with GR. 

Linear, non-linear 

relationship is shown by blue 
and black line respectively. 

Both relationship do not 

capture the high TOC zones 

indicated by arrow. 

Figure3. Crossplot of measured P-impedance vs GR color-coded with TOC. 
Somewhat linear relationship is noticed between high TOC and high GR. 

Points with high values of both are captured (red polygon) and back projected 

to the well log curves (right). 

Figure 4: Different facies shown in green, dark green and red colors are defined 

based on the cutoff values of GR and P-impedance. Observing the defined facies 
on the well log panel, it can be concluded that quality of VM formation increases 

with depth which is trustworthy based on the known geological information. To 

consider the uncertainty analysis in defining facies, Gaussian ellipses shown here 
are used for creating probability distribution of each facies. 

 

Figure5. Inverted P-impedance section along an arbitrary line that passes through the wells. A reasonable fair match 
between inverted and measured impedances is noticed.  
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TOC characterization of Vaca Mureta shale with post-stack seismic data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Crossplot of actual (x-axis) and predicted (y-axis) GR 
response using PNN approach (left). A correlation of 95% is noticed.  

 

Figure 7: Log panel showing the match between actual (black) and 

modeled (red) GR log derived using PNN for different wells after 
validation. 

 

 

Figure 8: Arbitrary line extracted from the facies volume and passing through 

three wells. Better quality of the shale reservoir is noticed in the lower part of the 

VM formation also the thickness of facies 1 (green) increases from shallower part 

to the deeper part of the interval, as expected from the geological information. 

Figure 9: Arbitrary line extracted from the probability volume for facies1. High 

probability of occurrence of this facies is represented by brown color. 

Figure 10: Distribution of different facies along a horizon slice taken 8ms above 

the base of reservoir. Facies 1 seems to dominate the display. 

Figure 11: Map depicting the probability of occurrence of facies 1. The 

hot colors on this map indicates the zones where the probability of 

occurrence of high TOC zone is greater than 85% 
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