Time-lapse seismic adds the fourth dimension to traditional 3D seismic acquisition. Whereas 3D seismic provides a static image of the earth, 4D provides an evolving understanding of what happens within a producing reservoir and why the production profile of the various wells behaves as it does.
One well-known application has been the identification of depleted or bypassed zones within the reservoir; heterogeneities in reservoir properties that cannot be understood using standalone 3D datasets. Reservoir engineers seek to minimize drilling risk, optimize the initial distribution of producing and injector wells, maximize the production time between initial well completion and uneconomical water saturation, and ultimately, to manage all successive producing and injector wells such that maximum recovery of reserves proceeds with minimum cost and risk. Relevant considerations include the cost-effectiveness of wells being planned, extending the life of depleted reservoirs, and avoiding production profiles that unnecessarily result in stranded reserves.
3D reservoir model construction, production simulation, and model updates rely upon the reference seismic data from each vintage of acquisition; baseline and each monitor survey, having optimal resolution and image quality. Of utmost importance, the acquisition geometry needs to be repeated as precisely as possible each time, or the processing applied needs to robustly compensate for the various differences in acquisition without compromising the fidelity of the relevant underlying weak changes in seismic signals. Our clients, the oil companies, demand continuous efforts to make 4D seismic data more relevant, more accurate, and more informative.
TGS publications at the 2017 EAGE conference in Paris highlight four fundamental areas where advances in marine 4D acquisition and processing are improving 4D repeatability and the detection of weak changes in reservoir state:
1. Fundamental changes in towed streamer survey geometry
2. The availability of dual-sensor technology
3. Improvements in the modeling and measurement of shot-by-shot source signatures
4. Seismic imaging developments that enable more flexible and efficient Permanent Reservoir Monitoring (PRM) receiver geometries
Anderson et al. review the 32-year history of 4D surveys over the Gullfaks field in the Norwegian North Sea. The use of High-Density 3D (HD3D) streamer spreads from 2008 onwards has culminated in the sum of the difference in source and receiver positions for a given trace pair between consecutive surveys (|dS + dR|) being reduced from an average of 100.48 m to 18.95 m. Most notably, the availability of Ramform vessels towing up to 17 streamers at 50 m separation doubles fold and yields 20-25% relative improvement in the normalized RMS amplitude difference (NRMSD) by comparison to 100 m streamer separation.
As discussed in the recent feature article titled ‘Dual-Sensor Stands High After Ten Years’, dual-sensor GeoStreamer® acquisition enables wavefield separation in processing. The up-going pressure wavefield (P-UP) is the ghost-free wavefield that contains no imprint of the dynamic sea-state, whereas the down-going pressure wavefield (P-DWN) does carry the dynamic sea-state imprint that varies from shot-by-shot, and therefore contributes non-repeatable noise to any 4D project. Anderson et al. note that in addition to providing the optimal P-UP monitoring platform for future 4D surveys, the availability of GeoStreamer means that the streamers can be towed deeper with less noise, and the data can be accurately redatumed (where necessary) to match the depth of legacy hydrophone-only surveys, courtesy of wavefield separation.